next up previous
Next: Algorithm D: VCShare andUp: The Switch SchemesPrevious: Algorithm B: ExcessFairShare/Overload

Algorithm C: MaxAllocation/Overload

The weighted maximum allocation is defined as the maximum of allocation divided by the weight among all VCs. The Excess_ERis calculated based on weighted maximum previous allocation ( WtMaxAllocPrevious) and overload. Let ibe the VC number in the BRM cell.


$\displaystyle \mbox{WtMaxAllocPrevious}$ $\textstyle \mbox{$\leftarrow$ }$ $\displaystyle \mbox{WtMaxAllocCurrent}$ (25)
$\displaystyle \mbox{WtMaxAllocCurrent}$ $\textstyle \mbox{$\leftarrow$ }$ 0 (26)


$\displaystyle \mbox{Excess\_ER}$ $\textstyle \mbox{$\leftarrow$ }$ $\displaystyle \frac{w(i) \mbox{WtMaxAllocPrevious}}{z}$ (27)
$\displaystyle \mbox{WtMaxAllocCurrent}$ $\textstyle \mbox{$\leftarrow$ }$ $\displaystyle \mbox{Max (WtMaxAllocCurrent,Excess\_ER/w(i))}$ (28)

Let jbe the VC such that $Excess\_ER(j)/w(j)$is the maximum of $Excess\_ER(i)/w(i)$. The $Excess\_ER(i)$calculated by the above algorithm is proportional to the weight w(i). As the overload converges to one, the allocation $Excess\_ER(i)$converges to the ExcessFairShare(i) term.

Bobby Vandalore