Incorporating Compatible Pairs in Kidney Exchange
A Dynamic Weighted Matching Model

WUSTL CS: Zhuoshu Li (Google), Chien-Ju Ho, Sanmay Das
WUSTL Medicine: Jason Wellen
Summer REU: Kelsey Lieberman, William Macke, Sofia Carrillo
Overview
Overview

✧ Compatible pairs will not participate if they cannot get better kidneys
Overview

✧ Compatible pairs will not participate if they cannot get better kidneys
 • Include match quality into kidney exchange
Overview

🔹 Compatible pairs will not participate if they cannot get better kidneys

• Include match quality into kidney exchange
• Simulator for studying the benefits under different settings
Overview

- Compatible pairs will not participate if they cannot get better kidneys
 - Include match quality into kidney exchange
 - Simulator for studying the benefits under different settings

- Compatible pairs have the need of immediacy since they are unlikely to wait
Overview

✧ Compatible pairs will not participate if they cannot get better kidneys
 • Include match quality into kidney exchange
 • Simulator for studying the benefits under different settings

✧ Compatible pairs have the need of immediacy since they are unlikely to wait
 • Hybrid static-dynamic matching model
Overview

✦ Compatible pairs will not participate if they cannot get better kidneys
 • Include match quality into kidney exchange
 • Simulator for studying the benefits under different settings

✦ Compatible pairs have the need of immediacy since they are unlikely to wait
 • Hybrid static-dynamic matching model
 • New algorithm —ODASSE based on online primal-dual
Compatible pairs will not participate if they cannot get better kidneys

- Include match quality into kidney exchange
- Simulator for studying the benefits under different settings

Compatible pairs have the need of immediacy since they are unlikely to wait

- Hybrid static-dynamic matching model
- New algorithm — ODASSE based on online primal-dual
Overview

✦ Compatible pairs will not participate if they cannot get better kidneys
 • Include match quality into kidney exchange
 • Simulator for studying the benefits under different settings

✦ Compatible pairs have the need of immediacy since they are unlikely to wait
 • Hybrid static-dynamic matching model
 • New algorithm — ODASSE based on online primal-dual

• Matched 50% more incompatible pairs
• Increased expected graft survival by 1 - 2 years for compatible pairs
Living Donor Kidney Transplantation

- About 100,000 people waiting for kidney transplants in the US (2016)
- In 2014, 17,107 kidney transplants took place, ~ only 1/3 from living donors
- Unfortunately, willing living donors are often not medically compatible.
- One option for them is to enter a kidney exchange program
Kidney Exchange

Roth, Sönmez, and Ünver, 2004, 2005
Kidney Exchange

Roth, Sönmez, and Ünver, 2004, 2005
Kidney Exchange

Donors

Husband
Brother

Recipients

Wife
Brother

Roth, Sönmez, and Ünver, 2004, 2005
Kidney Exchange

Roth, Sönmez, and Ünver, 2004, 2005
Kidney Exchange

Donors

Husband

Brother

Recipients

Wife

Brother

Brother

Roth, Sönmez, and Ünver, 2004, 2005
Kidney Exchange
Kidney Exchange

• Better algorithm design
 ▶ Increase the number of transplants
 Abraham et al, 2007; Anderson et al 2015, 2017; Ashlagi et al 2015; Dickerson et al 2015, 2016; and many.
Kidney Exchange

• Better algorithm design
 ▶ Increase the number of transplants
 Abraham et al, 2007; Anderson et al 2015, 2017; Ashlagi et al 2015; Dickerson et al 2015, 2016; and many.

• **Modeling matching quality**
 ▶ Consider to incorporate compatible pairs
 ▶ Provide incentive for compatible pairs to participate
LKDI Score:

9

This model calculates a risk score for a recipient of a potential live donor kidney.

Live Donor Characteristics:

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Donor age:</td>
<td>43</td>
</tr>
<tr>
<td>Donor sex:</td>
<td>male</td>
</tr>
<tr>
<td>Recipient sex:</td>
<td>female</td>
</tr>
<tr>
<td>Donor eGFR:</td>
<td>95</td>
</tr>
<tr>
<td>Donor SBP:</td>
<td>130</td>
</tr>
<tr>
<td>Donor BMI:</td>
<td>24</td>
</tr>
<tr>
<td>Donor is African-American:</td>
<td>No</td>
</tr>
<tr>
<td>Donor history of cigarette use:</td>
<td>No</td>
</tr>
<tr>
<td>Donor and recipient biologically related:</td>
<td>Yes</td>
</tr>
<tr>
<td>Donor and recipient are ABO incompatible:</td>
<td>No</td>
</tr>
<tr>
<td>Donor/Recipient Weight Ratio:</td>
<td>0.90 or higher</td>
</tr>
<tr>
<td>Donor and recipient HLA-B mismatches:</td>
<td>1</td>
</tr>
<tr>
<td>Donor and recipient HLA-DR mismatches:</td>
<td>1</td>
</tr>
</tbody>
</table>

Massie et al, A risk index for living donor kidney transplantation, 2016
Heterogeneity of Match Quality

Homogenous

Heterogeneous

Patients

Donors
Single Center Analysis
Single Center Analysis

- De-identified compatible pairs from 2014 - 2016
Single Center Analysis

- De-identified compatible pairs from 2014 - 2016
- Counterfactual simulations: potential to improve outcomes
Single Center Analysis

- De-identified compatible pairs from 2014 - 2016
- Counterfactual simulations: potential to improve outcomes
 - Optimal: arbitrary length cycles
Single Center Analysis

• De-identified compatible pairs from 2014 - 2016

• Counterfactual simulations: potential to improve outcomes
 ▶ Optimal: arbitrary length cycles
 ▶ Two and Three-cycle swap

![Diagram of Recipients and Donors]
Single Center Analysis

• De-identified compatible pairs from 2014 - 2016

• Counterfactual simulations: potential to improve outcomes
 ▶ Optimal: arbitrary length cycles
 ▶ Two and Three-cycle swap

Pareto improvement

Recipients

Donors
Counterfactual Analysis

LKDPI distribution

- Optimal with constraint
- Two&Three-cycle Swap
- Original

Frequency

LKDPi

-20 -10 0 10 20 30 40 50 60 70 80 90 100
Counterfactual Analysis

LKDPI distribution

- Blue: Optimal with constraint
- Red: Two&Three-cycle Swap
- Yellow: Original

Frequency vs. LKDPI
Counterfactual Analysis

LKDPI distribution

- Optimal with constraint
- Two&Three-cycle Swap
- Original

Frequency

LKDPPI

Cadaveric

Better

9
From LKDPI to Graft Survival

• Expected graft survival: estimated as a function of LKDPI: \(14.78 \exp(-0.01239 \text{ LKDPI}) \)
Including Compatible Pairs in Kidney Exchange

- Increase in the number of matches for **incompatible** pairs (quantity)

- Increase in the expected graft survival for **compatible** pairs (quality)
LKDPI Simulator
LKDPI Simulator

• To analyze the effects of policy changes, we need a faithful simulation of the real process
LK DPI Simulator

• To analyze the effects of policy changes, we need a faithful simulation of the real process

• Basic simulator model:
LKDPI Simulator

• To analyze the effects of policy changes, we need a faithful simulation of the real process

• Basic simulator model:
 ▶ Compatibility based on the simulator from Saidman et al. (2006)
LKDPI Simulator

• To analyze the effects of policy changes, we need a faithful simulation of the real process

• Basic simulator model:
 ▶ Compatibility based on the simulator from Saidman et al. (2006)

 ▶ Generate LKDPI-related characteristics to measure expected graft survival
Dynamic Matching
Dynamic Matching

✧ Compatible pairs may not be willing to wait any longer than necessary

▷ Also debate in the literature about the value of patience regardless (Akbarpour, S. Li, and Oveis Gharan, 2017; Ashlagi et al., 2017; Z. Li et al., 2015, 2018)
Dynamic Matching

- Compatible pairs may not be willing to wait any longer than necessary
 - Also debate in the literature about the value of patience regardless (Akbarpour, S. Li, and Oveis Gharan, 2017; Ashlagi et al., 2017; Z. Li et al., 2015, 2018)

- New model: Hybrid Static-Dynamic Matching Model
 - A pool of patient incompatible pairs
 - Impatient compatible pairs
Hybrid Static-Dynamic Matching Model
Hybrid Static-Dynamic Matching Model

Online agent (Compatible pair) $t=2$

Standby agents (Incompatible pool)
Hybrid Static-Dynamic Matching Model

Online agent (Compatible pair)
$t=3$

Standby agents (Incompatible pool)

10
5

3
6
8
Hybrid Static-Dynamic Matching Model

Online agent (Compatible pair) $t=4$

Standby agents (Incompatible pool)
Hybrid Static-Dynamic Matching Model

Standby agents (Incompatible pool)
Hybrid Static-Dynamic Matching Model
Algorithmic Approach

• Most approaches in dynamic settings based on either greedy or batching mechanisms

• We consider a relaxed Integer Programming formulation:

\[
\begin{align*}
\text{max} & \quad \sum_{n=1}^{N} \sum_{i=0}^{I} w_{n,i} x_{n,i} \\
\text{s.t.} & \quad \sum_{i=0}^{I} x_{n,i} \leq 1, \forall n \in [T] \\
& \quad \sum_{n=1}^{N} x_{n,i} + \sum_{j=1}^{I} x_{T+i,j} \leq 1, \forall i \in [I] \\
& \quad x_{n,i} \in \{0, 1\}, \forall n \in [N], \forall i \in [I]^*
\end{align*}
\]
Algorithmic Approach

- Most approaches in dynamic settings based on either greedy or batching mechanisms

- We consider a relaxed Integer Programming formulation:

\[
\begin{align*}
\text{max} \quad & \sum_{n=1}^{N} \sum_{i=0}^{I} w_{n,i} x_{n,i} \\
\text{s.t.} \quad & \sum_{i=0}^{I} x_{n,i} \leq 1, \forall n \in [T] \\
\quad & \sum_{n=1}^{N} x_{n,i} + \sum_{j=1}^{I} x_{T+i,j} \leq 1, \forall i \in [I] \\
\quad & x_{n,i} \in \{0, 1\}, \forall n \in [N], \forall i \in [I]^* \\
\end{align*}
\]
Algorithmic Approach

• Most approaches in dynamic settings based on either greedy or batching mechanisms

• We consider a relaxed Integer Programming formulation:

\[
\max \sum_{n=1}^{N} \sum_{i=0}^{I} w_{n,i} x_{n,i} \\
\text{s.t.} \sum_{i=0}^{I} x_{n,i} \leq 1, \forall n \in [T] \\
\sum_{n=1}^{N} x_{n,i} + \sum_{j=1}^{I} x_{T+i,j} \leq 1, \forall i \in [I] \\
x_{n,i} \in \{0, 1\}, \forall n \in [N], \forall i \in [I]^*
\]
Algorithmic Approach

• Most approaches in dynamic settings based on either greedy or batching mechanisms

• We consider a relaxed Integer Programming formulation:

\[
\begin{align*}
\text{max} & \quad \sum_{n=1}^{N} \sum_{i=0}^{I} w_{n,i} x_{n,i} \\
\text{s.t.} & \quad \sum_{i=0}^{I} x_{n,i} \leq 1, \forall n \in [T] \\
& \quad \sum_{n=1}^{N} x_{n,i} + \sum_{j=1}^{I} x_{T+i,j} \leq 1, \forall i \in [I] \\
& \quad x_{n,i} \in \{0, 1\}, \forall n \in [N], \forall i \in [I]^*
\end{align*}
\]
Algorithmic Approach

- Most approaches in dynamic settings based on either greedy or batching mechanisms

- We consider a relaxed Integer Programming formulation:

\[
\begin{align*}
\text{max} & \quad \sum_{n=1}^{N} \sum_{i=0}^{I} w_{n,i} x_{n,i} \\
\text{s.t.} & \quad \sum_{i=0}^{I} x_{n,i} \leq 1, \forall n \in [T] \\
& \quad \sum_{n=1}^{N} x_{n,i} + \sum_{j=1}^{I} x_{T+i,j} \leq 1, \forall i \in [I] \\
& \quad x_{n,i} \in \{0, 1\}, \forall n \in [N], \forall i \in [I]^*
\end{align*}
\]
Algorithmic Approach

• Most approaches in dynamic settings based on either greedy or batching mechanisms

• We consider a relaxed Integer Programming formulation:

\[
\begin{align*}
\text{max} & \quad \sum_{n=1}^{N} \sum_{i=0}^{I} w_{n,i} x_{n,i} \\
\text{s.t.} & \quad \sum_{i=0}^{I} x_{n,i} \leq 1, \forall n \in [T] \\
& \quad \sum_{n=1}^{N} x_{n,i} + \sum_{j=1}^{I} x_{T+i,j} \leq 1, \forall i \in [I] \\
& \quad x_{n,i} \in \{0, 1\}, \forall n \in [N], \forall i \in [I]^*
\end{align*}
\]

Weights (match quality)

Match variables

Online agents (compatible pairs)

Each online agent matches either with itself (i=0) or with a standby agent (i>0)

Standby agents (incompatible pairs)
Algorithmic Approach

• Most approaches in dynamic settings based on either greedy or batching mechanisms

• We consider a relaxed Integer Programming formulation:

\[
\begin{align*}
\max & \quad \sum_{n=1}^{N} \sum_{i=0}^{I} w_{n,i} x_{n,i} \\
\text{s.t.} & \quad \sum_{i=0}^{I} x_{n,i} \leq 1, \forall n \in [T] \\
& \quad \sum_{n=1}^{N} x_{n,i} + \sum_{j=1}^{I} x_{T+i,j} \leq 1, \forall i \in [I] \\
& \quad x_{n,i} \in \{0, 1\}, \forall n \in [N], \forall i \in [I]^*
\end{align*}
\]

Weights (match quality)

Match variables

Online agents (compatible pairs)

Standby agents (incompatible pairs)

Each online agent matches either with itself (i=0) or with a standby agent (i>0)

Each standby agent matches with exactly one other agent
Algorithmic Approach

• Most approaches in dynamic settings based on either greedy or batching mechanisms

• We consider a relaxed Integer Programming formulation:

\[
\begin{align*}
\text{max} & \quad \sum_{n=1}^{N} \sum_{i=0}^{I} w_{n,i} x_{n,i} \\
\text{s.t.} & \quad \sum_{i=0}^{I} x_{n,i} \leq 1, \forall n \in [T] \\
& \quad \sum_{n=1}^{N} x_{n,i} + \sum_{j=1}^{I} x_{T+i,j} \leq 1, \forall i \in [I] \\
& \quad x_{n,i} \in \{0, 1\}, \forall n \in [N], \forall i \in [I]^*
\end{align*}
\]
Algorithmic Approach

• Most approaches in dynamic settings based on either greedy or batching mechanisms

• We consider a relaxed Integer Programming formulation:

\[
\begin{align*}
\text{max} & \quad \sum_{n=1}^{N} \sum_{i=0}^{I} w_{n,i} x_{n,i} \\
\text{s.t.} & \quad \sum_{i=0}^{I} x_{n,i} \leq 1, \forall n \in [T] \\
& \quad \sum_{n=1}^{N} x_{n,i} + \sum_{j=1}^{I} x_{T+i,j} \leq 1, \forall i \in [I] \\
& \quad x_{n,i} \in \{0, 1\}, \forall n \in [N], \forall i \in [I]^* \\
\end{align*}
\]

Weights (match quality)

Match variables

Online agents (compatible pairs)

Easily extend to k cycles and chain

Each online agent matches either with itself ($i=0$) or with a standby agent ($i>0$)

Each standby agent matches with exactly one other agent

Standby agents (incompatible pairs)

All agents
Dual Formulation and ODASSE

\[
\begin{align*}
\min & \quad \sum_{t=1}^{T} \alpha_t + \sum_{i=0}^{I} \beta_i \\
\text{s.t.} & \quad w_{t,i} - \alpha_t - \beta_i \leq 0, \forall t \in [T], i \in [I]^* \\
& \quad w_{t+j,i} - \beta_j - \beta_i \leq 0, \forall i \in [I], j \in [I] \\
& \quad \alpha_t, \beta_i \geq 0, \forall t \in [T], i \in [I] \\
& \quad \beta_0 = 0
\end{align*}
\]
Dual Formulation and ODASSE

\[
\min \sum_{t=1}^{T} \alpha_t + \sum_{i=0}^{I} \beta_i \\
\text{s.t. } w_{t,i} - \alpha_t - \beta_i \leq 0, \forall t \in [T], i \in [I]^* \\
\quad w_{t+j,i} - \beta_j - \beta_i \leq 0, \forall i \in [I], j \in [I] \\
\quad \alpha_t, \beta_i \geq 0, \forall t \in [T], i \in [I] \\
\quad \beta_0 = 0
\]

- \(\alpha_t, \beta_i \) can be interpreted as estimated values (shadow survival estimates) of compatible pairs and incompatible pairs respectively.
Dual Formulation and ODASSE

\[
\begin{align*}
\min & \sum_{t=1}^{T} \alpha_t + \sum_{i=0}^{I} \beta_i \\
\text{s.t.} & \quad w_{t,i} - \alpha_t - \beta_i \leq 0, \forall t \in [T], i \in [I]^* \\
& \quad w_{t+j,i} - \beta_j - \beta_i \leq 0, \forall i \in [I], j \in [I] \\
& \quad \alpha_t, \beta_i \geq 0, \forall t \in [T], i \in [I] \\
& \quad \beta_0 = 0
\end{align*}
\]

- \(\alpha_t, \beta_i\) can be interpreted as estimated values (shadow survival estimates) of compatible pairs and incompatible pairs respectively.
- Given optimal \(\beta_i^*\) we can derive the online assignment rule \(i^* = \arg\max_i \{w_{t,i} - \beta_i^*\}\) (Online Dual Assignment Using Shadow Survival Estimates).
Estimating β_i^*
Estimating β_i^*

- Training data generated by simulator
Estimating β^*_i

- Training data generated by simulator
 - True value comes by solving oracle version of relaxed integer programming problem
Estimating β_i^*

- Training data generated by simulator
 - True value comes by solving oracle version of relaxed integer programming problem

- Train machine learning model on
Estimating β_i^*

- Training data generated by simulator
 - True value comes by solving oracle version of relaxed integer programming problem

- Train machine learning model on
 - Demographic information of an incompatible pair
Estimating β_i^*

- **Training data generated by simulator**
 - True value comes by solving oracle version of relaxed integer programming problem

- **Train machine learning model on**
 - Demographic information of an incompatible pair
 - Initial graph state of incompatible pairs
Estimating β_i^*

- **Training data generated by simulator**
 - True value comes by solving oracle version of relaxed integer programming problem

- **Train machine learners**
 - Demographic information of an incompatible pair
 - Initial graph state of incompatible pairs

![Graph showing predicted vs. true β values]

- Scatter plot of predicted β vs. true β
Results

- Increase in the number of matches for **incompatible** pairs (quantity)
- Increase in the expected graft survival for **compatible** pairs (quality)
Results: Potential Social Impact

<table>
<thead>
<tr>
<th></th>
<th>Baseline</th>
<th>OAES</th>
<th>ODASSE</th>
<th>Oracle</th>
</tr>
</thead>
<tbody>
<tr>
<td>Matched proportion of incompatible pairs</td>
<td>54.4%</td>
<td>74.6%</td>
<td>70.6%</td>
<td>76.0%</td>
</tr>
<tr>
<td>Expected graft survival of compatible pairs</td>
<td>9.6</td>
<td>11.1</td>
<td>11.2</td>
<td>11.4</td>
</tr>
<tr>
<td>Expected graft survival of incompatible pairs</td>
<td>10.4</td>
<td>9.8</td>
<td>9.6</td>
<td>10.0</td>
</tr>
</tbody>
</table>

OAES (Online allocation via exhaustive search) solves an IP each time but only performs the match recommended for the online/impatient agent.
Results: Potential Social Impact

<table>
<thead>
<tr>
<th></th>
<th>Baseline</th>
<th>OAES</th>
<th>ODASSE</th>
<th>Oracle</th>
</tr>
</thead>
<tbody>
<tr>
<td>Matched proportion of incompatible pairs</td>
<td>54.4%</td>
<td>74.6%</td>
<td>70.6%</td>
<td>76.0%</td>
</tr>
<tr>
<td>Expected graft survival of compatible pairs</td>
<td>9.6</td>
<td>11.1</td>
<td>11.2</td>
<td>11.4</td>
</tr>
<tr>
<td>Expected graft survival of incompatible pairs</td>
<td>10.4</td>
<td>9.8</td>
<td>9.6</td>
<td>10.0</td>
</tr>
</tbody>
</table>

OAES (Online allocation via exhaustive search) solves an IP each time but only performs the match recommended for the online/impatient agent.
OAES (Online allocation via exhaustive search) solves an IP each time but only performs the match recommended for the online/impatient agent.
Results: Potential Social Impact

<table>
<thead>
<tr>
<th></th>
<th>Baseline</th>
<th>OAES</th>
<th>ODASSE</th>
<th>Oracle</th>
</tr>
</thead>
<tbody>
<tr>
<td>Matched proportion of incompatible pairs</td>
<td>54.4%</td>
<td>74.6%</td>
<td>70.6%</td>
<td>76.0%</td>
</tr>
<tr>
<td>Expected graft survival of compatible pairs</td>
<td>9.6</td>
<td>11.1</td>
<td>11.2</td>
<td>11.4</td>
</tr>
<tr>
<td>Expected graft survival of incompatible pairs</td>
<td>10.4</td>
<td>9.8</td>
<td>9.6</td>
<td>10.0</td>
</tr>
</tbody>
</table>

OAES (Online allocation via exhaustive search) solves an IP each time but only performs the match recommended for the online/impatient agent.
Results: Potential Social Impact

<table>
<thead>
<tr>
<th></th>
<th>Baseline</th>
<th>OAES</th>
<th>ODASSE</th>
<th>Oracle</th>
</tr>
</thead>
<tbody>
<tr>
<td>Matched proportion of incompatible pairs</td>
<td>54.4%</td>
<td>74.6%</td>
<td>70.6%</td>
<td>76.0%</td>
</tr>
<tr>
<td>Expected graft survival of compatible pairs</td>
<td>9.6</td>
<td>11.1</td>
<td>11.2</td>
<td>11.4</td>
</tr>
<tr>
<td>Expected graft survival of incompatible pairs</td>
<td>10.4</td>
<td>9.8</td>
<td>9.6</td>
<td>10.0</td>
</tr>
</tbody>
</table>

OAES (Online allocation via exhaustive search) solves an IP each time but only performs the match recommended for the online/impatient agent.
Results: Potential Social Impact

<table>
<thead>
<tr>
<th></th>
<th>Baseline</th>
<th>OAES</th>
<th>ODASSE</th>
<th>Oracle</th>
</tr>
</thead>
<tbody>
<tr>
<td>Matched proportion of incompatible pairs</td>
<td>54.4%</td>
<td>74.6%</td>
<td>70.6%</td>
<td>76.0%</td>
</tr>
<tr>
<td>Expected graft survival of compatible pairs</td>
<td>9.6</td>
<td>11.1</td>
<td>11.2</td>
<td>11.4</td>
</tr>
<tr>
<td>Expected graft survival of incompatible pairs</td>
<td>10.4</td>
<td>9.8</td>
<td>9.6</td>
<td>10.0</td>
</tr>
</tbody>
</table>

OAES (Online allocation via exhaustive search) solves an IP each time but only performs the match recommended for the online/impatient agent.
Results: Potential Social Impact

<table>
<thead>
<tr>
<th></th>
<th>Baseline</th>
<th>OAES</th>
<th>ODASSE</th>
<th>Oracle</th>
</tr>
</thead>
<tbody>
<tr>
<td>Matched proportion of incompatible pairs</td>
<td>54.4%</td>
<td>74.6%</td>
<td>70.6%</td>
<td>76.0%</td>
</tr>
<tr>
<td>Expected graft survival of compatible pairs</td>
<td>9.6</td>
<td>11.1</td>
<td>11.2</td>
<td>11.4</td>
</tr>
<tr>
<td>Expected graft survival of incompatible pairs</td>
<td>10.4</td>
<td>9.8</td>
<td>9.6</td>
<td>10.0</td>
</tr>
</tbody>
</table>

OAES (Online allocation via exhaustive search) solves an IP each time but only performs the match recommended for the online/impatient agent.
Results: Potential Social Impact

<table>
<thead>
<tr>
<th></th>
<th>Baseline</th>
<th>OAES</th>
<th>ODASSE</th>
<th>Oracle</th>
</tr>
</thead>
<tbody>
<tr>
<td>Matched proportion of incompatible pairs</td>
<td>54.4%</td>
<td>74.6%</td>
<td>70.6%</td>
<td>76.0%</td>
</tr>
<tr>
<td>Expected graft survival of compatible pairs</td>
<td>9.6</td>
<td>11.1</td>
<td>11.2</td>
<td>11.4</td>
</tr>
<tr>
<td>Expected graft survival of incompatible pairs</td>
<td>10.4</td>
<td>9.8</td>
<td>9.6</td>
<td>10.0</td>
</tr>
</tbody>
</table>

OAES (Online allocation via exhaustive search) solves an IP each time but only performs the match recommended for the online/impatient agent.
Results: Fairness (O types)

- Proportion Matched

<table>
<thead>
<tr>
<th>Category</th>
<th>Baseline</th>
<th>OAES</th>
</tr>
</thead>
<tbody>
<tr>
<td>incompatible pairs</td>
<td>0.544</td>
<td>0.75</td>
</tr>
<tr>
<td>with recipients with type O</td>
<td>0.32</td>
<td>0.62</td>
</tr>
</tbody>
</table>
Results: Algorithms

Total Expected Graft Survival by Algorithm

Baseline (Compatible and Incompatible Separate)
OAES
ODASSE (ML estimates of β)
ODASSE (Simulated estimates of β)
Oracle (ODASSE with perfect β)
Conclusion

• A framework for analyzing match quality in models of kidney exchange

• Estimate the benefits of including compatible pairs in kidney exchange for both compatible pairs and incompatible pairs
 ✤ A new hybrid static-dynamic matching model.
 ✤ Online primal-dual + learning algorithm

• Practical directions
 ✤ Embed with the surgical team for weekly intake meetings
 ✤ Track waiting times and qualities
 ✤ Implement weighted allocation mechanism in a single center