1 A Scheduling Problem

- You manage a ginormous space telescope.
- Lots of astronomers want to use it to make observations.
- Each astronomer’s project p_i requires use of the telescope starting at a fixed time s_i (when their grant starts) and running for ℓ_i days.
- Only one project can use the telescope at a time.
- Your goal: justify your outrageous budget to NASA by scheduling as many projects as possible!
- More formally: given a set P of projects p_i, each occupying half-open interval $[s_i, s_i + \ell_i)$...
- Choose a subset $\Pi \subseteq P$ of projects for which
 - No two projects’ intervals overlap (“conflict”);
 - The number of projects in Π is maximized.
- (this is one of many variants of scheduling or activity selection problem)

1.1 Examples - learning from failure

OK – I’m open to suggestions. How should we solve this problem?

- **Suggestion 1**: repeatedly pick shortest non-conflicting, unscheduled project (i.e. that does not conflict with any scheduled project).
- Does this strategy always yield an optimal solution? Prove or disprove.
• **Counterexample:**

• **Suggestion 2:** repeatedly pick non-conflicting project with earliest starting time.

• Does this always yield an optimal solution? Prove or disprove.

• **Counterexample:**

• **Suggestion 3:** first, label each project with number of other projects with which it conflicts. Then, repeatedly pick nonconflicting project with fewest total conflicts.

• Does this always yield an optimal solution? Prove or disprove.

• **Counterexample:**

Aaaaargh! We need a *principle* to stop the endless flailing!

1.2 An approach that works

What structure do all above solutions have in common?

• Repeatedly pick an element until no more feasible choices remain.
Among all feasible choices, we always pick the one that minimizes or maximizes some property (project length, start time, # conflicts).

Such algorithms are called greedy.

As we've seen, greedy algorithms are frequently not optimal.

Ah, but maybe we have been using the wrong property!

Let’s take another wild guess...

- For each project p_i, define its finishing time f_i to be $s_i + \ell_i$.
- Repeatedly pick non-conflicting, unscheduled project with earliest finishing time.
- Here’s a reasonably efficient implementation of this strategy in pseudocode.

\[
\text{Schedule}(P) \\
\text{sort } P \text{ in increasing order } \{p_1 \ldots p_n\} \text{ of finishing time } f_i \\
\Pi \leftarrow \{p_1\} \\
j \leftarrow 1 \\
\text{for } i = 2 \ldots n \{ \\
\quad \text{if } s_i \geq f_j \{ \\
\quad \quad \Pi \leftarrow \Pi \cup \{p_i\} \\
\quad \quad j \leftarrow i \} \} \\
\text{return } \Pi
\]

- For unrestricted times, sorting is $O(n \log n)$.
- Selection procedure is $O(1)$ for each i, so $O(n)$ overall.
- Hence, total complexity of Schedule is $O(n \log n)$.
- But does it work????

1.3 Proving correctness

Why should this greedy algorithm work when all others failed? Three key observations do it for us:

1. **Greedy Choice**: For every problem instance P, there exists an optimal solution that includes first element \hat{p} picked by greedy algo.
2. **Inductive Structure**: After making greedy first choice \(\hat{p} \) for problem instance \(P \), we are left with smaller subproblem \(P' \), such that, if \(\Pi' \) is a feasible solution to \(P' \), then \(\Pi' \cup \{ \hat{p} \} \) is a feasible solution to \(P \).

Equivalently, we say that subproblem \(P' \) has *no external constraints* restricting its feasible solutions.

3. **Optimal Substructure**: If \(P' \) is subproblem left from \(P \) after greedy choice \(\{ \hat{p} \} \), and \(\Pi' \) is an optimal solution to \(P' \), then \(\Pi' \cup \{ \hat{p} \} \) is an optimal solution to \(P \).

Let’s prove these properties for SCHEDULE’s greedy choice.

- **Greedy Choice**: Let \(P \) be instance of scheduling problem, and let \(\hat{p} \in P \) be first project picked by SCHEDULE. Then there exists an optimal solution to \(P \) that contains \(\hat{p} \).

- **Pf**: we use an *exchange argument*.

- Let \(\Pi^* \) be *any optimal solution* to \(P \).

- If \(\hat{p} \in \Pi^* \), we are done.

- Otherwise, let \(\Pi' \) be solution obtained by removing earliest project \(p \in \Pi^* \) and adding \(\hat{p} \).

- By construction, \(\hat{p} \) ends no later than \(p \), so if \(p \) does not conflict with any later project of \(\Pi^* \), neither does \(\hat{p} \). Hence, \(\Pi' \) is feasible.

- Moreover, \(|\Pi'| = |\Pi^*| \), so \(\Pi^* \) is optimal. QED

One down, two to go.

- **Inductive Structure**: After making greedy first choice \(\hat{p} \) for problem instance \(P \), we are left with smaller subproblem \(P' \), with no external constraints.

- After we select the first project \(\hat{p} \), what is remaining subproblem?
• It’s not just $P - \{\hat{p}\}$!

• Having selected \hat{p}, we cannot pick any other project that conflicts with it.

• Put another way, choosing \hat{p} imposes an external constraint on subproblem $P - \{\hat{p}\}$, because not every feasible solution to the subproblem can be combined with the greedy choice.

• Simple fix: define the subproblem to be

$$P' = P - \{\hat{p}\} - \{\text{projects that conflict with } \hat{p}\}.$$

Now any feasible solution to P' can be combined with \hat{p}, and so there is no external constraint on P'.

Two down, one to go.

• **Optimal Substructure**: If Π' is an optimal solution to subproblem P', then $\Pi' \cup \{\hat{p}\}$ is an optimal solution to P.

• **Pf**: let Π' be as given.

• Then $\Pi = \Pi' \cup \{\hat{p}\}$ is a feasible solution to P, with size $|\Pi| = |\Pi'| + 1$.

• Now suppose Π were not optimal.

• Let Π^* be an optimal solution containing \hat{p}. (Such a solution must exist by the Greedy Choice Property.)

• Then $\Pi^* - \{\hat{p}\}$ is a feasible schedule for P' with

$$|\Pi^* - \{\hat{p}\}| > |\Pi - \{\hat{p}\}| = |\Pi'|,$$

contradicting optimality of Π'.

• Conclude that Π must be optimal. QED

OK, that was fun. But why do these three facts constitute a proof that SCHEDULE always obtains an optimal solution?

• **Claim**: SCHEDULE’s solution is optimal for every problem instance P.

• **Pf**: by induction on size of problem P.
• **Bas:** if P has size 1, greedy solution is trivially as good as optimal (it picks the one element).

• **Ind:** suppose SCHEDULE’s solution is optimal for problem instances of size $< k$.

• Consider an instance P of size k.

• Let P' be subproblem obtained from P after making first greedy choice, and let \hat{p} be the greedy choice. Observe that $|P'| < |P|$.

• By IH, SCHEDULE optimally solves P'. Let Π' be the solution it produces.

• Inductive structure property guarantees that $\Pi' \cup \{\hat{p}\}$ is a feasible solution.

• Moreover, optimal substructure property guarantees that $\Pi' \cup \{\hat{p}\}$ is an optimal solution for P.

• Hence, SCHEDULE optimally solves P of size k. QED

Key Observation: the inductive proof uses the two structural properties as subroutines. The optimal substructure property in turn uses the greedy choice property in its proof. This form of argument is a “design pattern” for proving correctness of a greedy algorithm. It also serves as a guide to algorithm design: pick your greedy choice to satisfy G.C.P. while leaving behind a subproblem with optimal substructure!

2 Knapsack Problem

A classic problem for which one might want to apply a greedy algo is knapsack.

• Given: a knapsack of capacity M, and n items.

• Item i has weight $w_i > 0$, value $v_i > 0$.

• **Problem:** choose contents for the knapsack so that the total weight is at most M and total value is maximized.

• (To make this interesting, we assume that $\sum_i w_i > M$, so we cannot choose everything.)

• Many versions of this problem exist, but let’s look at two.
2.1 Fractional Knapsack problem

First variant: fractional knapsack

- Can take any real-valued amount up to \(w_i \) of item \(i \).
- Examples: gold dust, gasoline, cocaine . . .
- Could also model return on activities, e.g. time spent coding vs time spent writing grants vs time spent reading papers.
- Suggestions? (Wait)
- Intuition: to maximize value, we want to take items with greatest "value density."
- Define \(d_i = \frac{v_i}{w_i} \).
- Density measures "bang for buck" from taking a fixed amount of a given item.

OK, so let’s design a (greedy) algorithm.

- Sort items in decreasing order of value density.
- Initial weight of knapsack is 0 (empty).
- For each item \(i \) in this order, add item to knapsack until it is used up or until total weight reaches \(M \).
- Cost is trivially \(O(n \log n) \). Is it correct?
- Let’s formulate and prove our key properties!

2.2 Proof that fractional Knapsack is optimal

- Greedy Choice: Consider a knapsack instance \(P \), and let item 1 be item of highest value density. Then there exists an optimal solution to \(P \) that uses as much of item 1 as possible (that is, \(\min(w_1, M) \)).

- Pf: suppose we have a solution \(\Pi \) that uses weight \(w < \min(w_1, M) \) of item 1. Let \(w' = \min(w_1, M) - w \).

- \(\Pi \) must contain at least weight \(w' \) of some other item(s), since it never pays to leave the knapsack partly empty.
• Construct Π^* from Π by removing w' worth of other items and replacing with w' worth of item 1.

• Because item 1 has max value density, Π^* has total value at least as big as Π. QED

One down, two to go.

• **Inductive Structure**: after making greedy first choice for P, we are left with a smaller problem instance P'.

• **Pf**: We are left with a knapsack of capacity $M' < M$ (possibly 0) and a collection of remaining items to fill it. Any feasible knapsack for P' may be combined with the remaining weight $M - M'$ of item 1 to form a feasible knapsack for P.

Two down, one to go.

• **Optimal Substructure**: optimal solution to P' yields optimal solution to P.

• **Pf**: suppose we find optimal solution Π' for P' and combine with greedy choice to get solution Π to P. Let $\hat{v} \leq v_1$ be value associated with initial greedy choice.

• Then $\text{value}(\Pi) = \text{value}(\Pi') + \hat{v}$.

• If Π is not optimal, let Π^* be an optimal solution that also makes greedy choice, i.e. uses as much of item 1 as possible. Remainder of knapsack after this item is removed has value greater than $\text{value}(\Pi')$, which is impossible. QED

• **Note**: that last bit of argument gets repetitive to write. It is enough for your homework to recognize that

\[\text{value}(\Pi) = \text{value}(\Pi') + \hat{v}, \]

that is, that the value of the full solution is the value of the subproblem’s solution plus that of the greedy choice.
2.3 And now, a classic failure

Lest you get all excited and think that greed always works...

- **0-1 knapsack** problem does not permit items to be subdivided.
- **Example:** gold bar, painting, iPod
- Each item still has weight w_i and value v_i.
- Goal is to maximize value of knapsack without going over weight M.

Fractional algo makes no sense in this context. What to do?

- Well, we can still assign value density d_i to each item.
- Intuitively, items of high value density are more attractive (diamond vs an equal-sized chunk of coal).
- **Suggestion:** sort items by decreasing value density as before, then choose items of highest density until next item would exceed total weight of M.
- Does this work? (wait)
- Counterexample with 3 items and $M = 5$:

- values = 20, 30, 40; weights = 2, 3, 3.5
- densities are 10, 10, 11.4
- Greedy algo picks item of weight 3.5 first, then stops with value 40.
- Optimal solution would take other two items for total value 50.

What broke?

- There is no optimal solution that contains the greedy choice!
- Hence, greedy choice property fails for this problem.
- (In fact, it is NP-hard, but we don’t know that yet!)
3 Huffman Coding

3.1 Set up for Huffman coding

We’re now going to look at a very important application of greedy algorithm design. In fact, you probably use it every day at least a few times without knowing it.

- **Setting**: data compression (ZIP, gzip, etc)
- Suppose we have a text consisting of a collection of letters.
- We want to encode this text efficiently on a computer.
- If there are at most 2^k distinct letters, each one can be represented by a k-bit code. For n-letter text, total size in bits is kn.
- However, what if letter frequencies are very unequal?
- **Example**: in *Moby Dick*, there are 117194 occurrences of ‘e’, but only 640 occurrences of ‘z’. Other letters are in-between.
- **Idea**: encode common letters with fewer bits!
- **Example** on text of 100k letters from 6-letter alphabet:
 - Smallest fixed-length encoding uses 3 bits per letter, hence 300,000 total bits.
 - Specified encoding uses only 224,000 bits.

Wait, are variable-length encodings possible?
- **Stupid example**: consider the following encoding of a 3-letter alphabet:
 - \(a \to 0 \)
 - \(b \to 1 \)
 - \(c \to 01 \)

- Hence, the message “ababc” would be encoded as “010101”.

- Anyone see a problem here?

- “ccc” is also encoded as “010101.” If you receive these bits, which message was sent?

- This is the *ambiguity problem*.

- In contrast, first code is *unambiguous* – no encoded message can be decoded as two different strings.

- *sufficient condition*: no code word is a prefix of any other code word. (Pf left as exercise)

- Such codes are called *prefix-free*, or simply *prefix codes*.

We will look at *Huffman coding*, a technique for optimal prefix code generation.

- **Problem**: given a sequence \(T \) built from letters \(X = \{x_1 \ldots x_n\} \), such that \(x_i \) occurs \(f_i \) times in \(T \).

- Produce an encoding function \(C(x) \) that maps characters to bit strings, s.t.
 1. \(C(X) \) is a prefix code.
 2. Total number of bits used to represent \(T \) is minimized. That is, minimize \(B(T) = \sum_i f_i \cdot |C(x_i)| \).

3.2 Prefix codes as trees

Now, Huffman coding algorithm and proof. We first need to come up with a framework for designing prefix codes.

- **Idea**: represent a code as a binary tree.
Each edge of tree is labeled with a bit (0 or 1).

- Left edges get 0’s, right edges get 1’s.

- Each letter x_i labels one leaf ℓ_i of tree.

- Codeword corresponding to x_i is given by the bitstring labeling path from root down to ℓ_i.

- Example:

A few important observations...

- **Fact**: no two leaves get the same codeword (they have different paths from root).

- **Fact**: because letters appear only at leaves, code corresponding to tree is a prefix code.

- (Otherwise, some codeword would end at an internal node.)

- **Fact**: in tree for an optimal code (min total # of bits), every internal node has two children.

- **Pf**: Let R be tree corresponding to a code, and suppose some int node $v \in R$ has one child w.

- Consider revised tree R' that deletes edge (v, w) and hangs subtree rooted at w off of v.

- Codewords for all letters below w in R are one bit shorter in R', and they do not collide with any other codewords from R. Hence, R does not yield optimal code.
One more important definition.

- Let depth of leaf ℓ_i, denoted $d(\ell_i)$, be length of codeword labeling path from root to ℓ_i in R.
- So, how many bits are used to represent text T with tree R?
- All copies of letter x_i together use $f_i \cdot d(\ell_i)$ bits.
- Hence,
 \[B(T) = \sum_i f_i \cdot d(\ell_i). \]

3.3 Finding an optimal tree

We’ve reduced the problem to searching the space of all binary trees with n leaves labeled with letters x_i, with 2 children per internal node. Goal is to find one labeled tree that minimizes $B(T)$.

- Intuitively, we want a tree that puts rare letters at high depth and common letters at low depth.
- **Idea**: build tree from bottom up. We will stick together subtrees until we have one full tree.
- Let $L = \{\ell_1, \ldots, \ell_n\}$ be set of leaves for all chars. Let f_i be frequency of letter x_i corresponding to leaf ℓ_i.
- Find the two leaves ℓ_a and ℓ_b in L with two lowest frequencies f_a and f_b.
- Link these leaves into a single subtree R_{ab}, and create a new “megaleaf” ℓ_{ab} with frequency $f_a + f_b$.

- Recursively solve problem on reduced input
 \[L \cup \{\ell_{ab}\} - \{\ell_a, \ell_b\}. \]
- Stop when L contains one megaleaf for whole tree.
• Finally, expand each megaleaf recursively from root to get final tree.

Note that this is a greedy algorithm: repeatedly join two least frequent leaves into one, until only one leaf remains.

3.4 Proof of optimality

We take the usual route to an optimality proof for greedy algorithms.

• Greedy Choice: Let L be an instance of the encoding problem, and let $\ell_a, \ell_b \in S$ be two leaves chosen for linking by greedy algorithm. Then there exists an optimal tree for L containing R_{ab}.

• Pf: Let R be any optimal tree for L. If R_{ab} is subtree of R, we are happy!

• Otherwise, let ℓ_x and ℓ_y be a pair of leaves in R w/common parent, such that $\delta = d(\ell_x) = d(\ell_y)$ is maximal.

• Assume that neither x nor y is one of a, b. (If it is, simplified version of following argument still works.)

• Modify R to obtain a new tree R^* by exchanging the positions of ℓ_a with ℓ_x and ℓ_b with ℓ_y. Now R^* contains R_{ab}.

• Let $B_R(T)$ be number of bits used for text T by R’s encoding.

• For new tree R^*, number of bits is given by

$$B_{R^*}(T) = B_R(T) - (f_x + f_y)\delta - f_a d(\ell_a) - f_b d(\ell_b) + (f_a + f_b)\delta + f_x d(\ell_a) + f_y d(\ell_b)$$

$$= B_R(T) + (f_a - f_x)(\delta - d(\ell_a)) + (f_b - f_y)(\delta - d(\ell_b)).$$
Note that, by greedy choices of \(a \) and \(b \), \((f_a - f_x) \leq 0 \) and \((f_b - f_y) \leq 0\).

Moreover, by choice of \(x \) and \(y \), \((\delta - d(\ell_a)) \geq 0 \) and \((\delta - d(\ell_b)) \geq 0\).

Conclude that \(B_{R'}(T) \leq B_R(T) \), and so \(R^* \) is optimal too. QED

One down, two to go.

Inductive Structure: first step of greedy algorithm leaves us with smaller instance \(L' \) of same problem.

Pf: let \(L' \) be set of leaves after first linking step. \(L' \) contains a smaller set of leaves with associated frequencies. Any strategy for joining the leaves of \(L' \) into a tree is compatible with our greedy choice, since we can replace the megaleaf \(R_{ab} \) in the final tree by the subtree with leaves \(\ell_a \) and \(\ell_b \).

Two down, one to go.

Optimal Substructure: let \(R' \) be an optimal tree constructed from leaves of \(L' \) after linking \(\ell_a \) and \(\ell_b \). Then \(R \), the tree obtained by replacing \(\ell_{ab} \) in \(R' \) with subtree \(R_{ab} \), is optimal.

Pf: Let \(d'(\ell_{ab}) \) be depth of megaleaf \(\ell_{ab} \) in \(R' \). Then in \(R \), we have

\[
d(\ell_a) = d(\ell_b) = d'(\ell_{ab}) + 1.
\]

Conclude that \(B_R(T) \) is given by

\[
B_R(T) = B_{R'}(T) - (f_a + f_b)d'(\ell_{ab}) + f_a d(\ell_a) + f_b d(\ell_b)
= B_{R'}(T) - (f_a + f_b)d'(\ell_{ab}) + (f_a + f_b)(d'(\ell_{ab}) + 1)
= B_{R'}(T) + f_a + f_b.
\]

Does usual contradiction argument work? Yes!

(Exercise: work through it.) QED

3.5 Complexity

How efficiently can we implement Huffman coding?

- Maintain leaf set \(L \) as priority queue keyed on frequency.

15
To find two least frequent leaves in L, do two extractMin ops.

Then insert new megaleaf back into L.

What does this cost?

- Each linking phase does two extractions and one insertion.
- Each of these three ops is $O(\log n)$ w/binary heap.
- There are only $n - 1$ phases, so total cost is $O(n \log n)$.

4 The Cable Guy Problem

- You are an installer for Charter Cable.
- Your job is to do installations by appointment.
- Appointments have a fixed length (30 minutes) and must start on a 30-minute boundary.
- Each new customer specifies an earliest and latest possible start time for her appointment.
- **Goal**: schedule as many appointments as possible in a day.

More formally...

- Given set P of unit-duration jobs that must be scheduled at integer times (“time slots”) 0, 1, 2, . . .
- Only one job may be scheduled per slot.
- Job i may start in any slot from s_i to e_i, inclusive.
- **Goal**: find a schedule that maximizes number of jobs scheduled.

4.1 A greedy algorithm

OK, here’s a simple algorithm. (Note: this is symmetric to the one we worked out in class – it works backward from the latest job, not forward from the earliest job.)

- Let P be input set of jobs.
• Let t be latest free slot in which some job from P may be scheduled.
• Let $\Sigma \subset P$ be set of all jobs in P that can be scheduled at time t.
• Choose job $i \in \Sigma$ with latest start time s_i.
• Schedule job i at time t.
• Recur on remaining job set $P - \{i\}$, until this set is empty or no jobs can run.

Example:

4.2 Optimality
Let’s implement our three-part proof...

• **Greedy Choice Property**: let \hat{i} be the job chosen first by greedy algo, and let \hat{t} be the time at which algo scheduled it. Then . . .

 . . . there exists an optimal solution that makes the greedy choice, that is, a soln that schedules \hat{i} at time \hat{t}.

 • (Note: it is not enough to find opt soln that uses \hat{i} – it must be placed at time \hat{t}, since this is what greedy choice does!)

OK, on with the proof!

• **Pf**: Let Π be any optimal solution.
• If Π schedules \hat{i} at time \hat{t}, great.
• Otherwise, we have two cases.
 • **Case 1**: Suppose Π doesn’t schedule \hat{i} at all.
 • If slot \hat{t} is empty in Π, can simply add \hat{i} for better soln.
• If slot \(\hat{t} \) is occupied by job \(j \), throw out \(j \) and put \(\hat{i} \) there. Soln has same size as before.

• \textit{Case 2}: Suppose \(\Pi \) schedules \(\hat{i} \) at time \(t \neq \hat{t} \)

• If slot \(\hat{t} \) is empty in \(\Pi \), move \(\hat{i} \) to \(\hat{t} \).

• Otherwise, some job \(j \) occupies slot \(\hat{t} \).

• Observe that \(t < \hat{t} \), since by choice of \(\hat{t} \), no job in \(P \) can be scheduled after time \(\hat{t} \).

• Observe also that by choice of job \(\hat{i} \),

\[s_{\hat{i}} \geq s_j. \]

• Since \(t \geq s_{\hat{i}} \), job \(j \) can run at time \(t \).

• Hence, we simply exchange slots of jobs \(\hat{i} \) and \(j \).

• In all cases, new soln has size at least that of old and so is optimal.

QED

One down, two to go.

• \textbf{Inductive Structure}: after making greedy choice, we are left with smaller instance of scheduling problem with no external constraints.

• \textbf{Pf}: Let \(P' = P - \{\hat{i}\} \).

\(P' \) is clearly a smaller set of jobs to be scheduled.

But what about constraints?

• First time greedy schedules a job, it can use latest slot that any job can take.

• For subsequent choices, this property does not hold! Consider our simple example.

• It seems we are more constrained on recursive calls than on original call! This breaks inductive structure.

• \textit{Two solutions here}. Either extend the problem, or more carefully define the recursive call.
• **Problem extension**: input to problem includes a list of blocked slots. On recursion, also block \(\hat{t} \).

• Check that my algo description and proof of GCP need not change under this extension!

• (This is nice because you can allow the cable guy to take a lunch break.)

• **Recursion Defn**: as it happens, times are filled in from latest to earliest.

• So, trim ends of all unscheduled jobs back to at most \(t - 1 \).

• Also, remove any jobs \(j \) for which \(s_j \geq t \).

• For remaining jobs, algo never looks beyond \(t - 1 \), so does not see additional constraints.

• (Might be able to simplify GCP proof a bit, but forbids lunch breaks.)

• With one of the above two hacks, adding \(\hat{i} \) in slot \(\hat{t} \) will be possible no matter how the subproblem is solved, so subsolution plus greedy choice is a feasible solution.

Two down, one to go.

• **Optimal Substructure**: let \(\Pi' \) be opt solution to subproblem \(P' \). Then \(\Pi' \) together with \(\hat{i} \) at time \(\hat{t} \) is opt solution to \(P \).

• Value of \(\Pi \) is value of \(\Pi' \), plus one.

• Apply usual contradiction argument. QED

Moral: be careful what your subproblem is. You may need to generalize your problem defn to make an inductive proof go through.

4.3 A fast implementation

How can we implement this algorithm efficiently?

• Let \(t \) be latest free slot.

• Observe that \(t \) decreases monotonically – we always schedule something in latest free slot for any job.
• Each time t decreases, it may pass e_i for one or more jobs i. These jobs join eligible set Σ.

• t may also pass s_i for one or more unscheduled jobs. These jobs are deleted from Σ and are unschedulable.

• At any time, we want the job in Σ with largest s_i.

These observations suggest the right data structure.

- Make sorted list L of jobs in P in decreasing order by e_i.
- $t \leftarrow \infty$
- Let Q be a max-first priority queue, keyed by job start times.
- Repeat following loop until $t = 0$ or L is empty:
 - If Q is empty, $t \leftarrow$ ending time of next job in L.
 - Otherwise, $t \leftarrow t - 1$.
 - Move all jobs j with $e_j = t$ from L to Q.
- $i \leftarrow Q$.ExtractMax()
- Schedule job i at time t
- Extract and discard any jobs with start time t from Q.

Running time?

- Let n be number of jobs in P.
- Each job is added to Q exactly once and removed exactly once.
- Total cost: $O(n \log n)$ for binary heap.
- t is decremented only as many times as a job is scheduled.
- Total cost: $O(n)$.
- List must initially be sorted.
- Total cost: $O(n \log n)$.
- Conclude that overall cost is $O(n \log n)$.