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ABSTRACT
This paper introduces a nonlinear logistic regression model
for classification. The main idea is to map the data to a fea-
ture space based on kernel density estimation. A discrimina-
tive model is then learned to optimize the feature weights as
well as the bandwidth of a Nadaraya-Watson kernel density
estimator. We then propose a hierarchical optimization al-
gorithm for learning the coefficients and kernel bandwidths
in an integrated way. Compared to other nonlinear mod-
els such as kernel logistic regression (KLR) and SVM, our
approach is far more efficient since it solves an optimiza-
tion problem with a much smaller size. Two other major
advantages are that it can cope with categorical attributes
in a unified fashion and naturally handle multi-class prob-
lems. Moveover, our approach inherits from logistic regres-
sion good interpretability of the model, which is important
for clinical applications but not offered by KLR and SVM.
Extensive results on real datasets, including a clinical pre-
diction application currently under deployment in a major
hospital, show that our approach not only achieves supe-
rior classification accuracy, but also drastically reduces the
computing time as compared to other leading methods.

Categories and Subject Descriptors
H.2.8 [Database Management]: Database Applications-
Data Mining; J.3 [Computer Applications]: Life and
medical Sciences

Keywords
Nonlinear classification; logistic regression; density estima-
tion; medical prediction

1. INTRODUCTION
Classification is a central and critical task in the area of

data mining. Many classification models have been pro-
posed, such as support vector machine (SVM), logistic re-
gression (LR), kernel logistic regression (KLR), decision tree
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(DT), and naive Bayes (NB) classifier. There are a few key
aspects regarding any classifier: 1) nonlinear separation abil-
ity, 2) support for mixed data types (numerical and cate-
gorical), 3) efficiency, 4) interpretability of model, and 5)
support for multiway (as opposed to binary) classification.
Few methods can competently achieve all of them.

An application that motivates this research is patient clas-
sification for early clinical warning, an NIH project currently
under clinical trial at the Barnes Jewish Hospital, one of the
largest hospitals in the United States. As we reported ear-
lier [13, 14], we classify patients for categorical outcomes of
certain disease or clinical event based on real-time data such
as vital signs. This application entails mixed data types and
requires good interpretability of model. Our previous study
has chosen LR as the classifier for this application [13,14].

Kernel-based SVM has good nonlinear separation abil-
ity. However, its output model is hard to interpret, which
severely limits its use in some domains such as clinical warn-
ing. Moreover, the outcome of SVM is score-based rather
than confidence-based. The score output from SVM for one
task is not comparable to another task and often makes little
sense to end users. Finally, SVM is inherently a binary clas-
sifier. Although there have been efforts to extend SVM to
multiway classification, it is known that these methods have
many limitations [1]. For example, the popular one-versus-
the-rest method suffers from issues such as: the training is
based on imbalanced datasets, and an instance may be as-
signed to multiple classes.

LR uses a linear weighted sum of the input attributes.
LR has some advantages over SVM as it is often more effi-
cient, and it is easier to extend LR to multiway classifica-
tion. Moreover, LR has good interpretability: its confidence-
based output is meaningful and comparable, and the weights
associated with each feature can indicate the most impor-
tant factors. However, LR is a linear classifier with a linear
decision boundary. Extending LR by the kernel trick re-
sults in KLR [11,20], which enables nonlinear classification.
Unlike SVM, KLR cannot be formulated as a quadratic pro-
gramming problem and iterative nonlinear optimization al-
gorithms such as quasi-Newton methods are needed. As a
result, the time complexity for training KLR is high. More-
over, KLR no longer offers good interpretability.

SVM, LR and KLR rely on numerical attributes and can-
not naturally handle categorical attributes. When handling
categorical attributes, they need to first transform those at-
tributes to numerical features. A typical way is using m
numbers to represent an m-category attribute [6]. Only one
of the m numbers is 1 with the others being 0. However, this
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Figure 1: ICU transfer rate for various age groups.

kind of preprocessing dramatically increases the number of
features.

In this paper, we propose a novel density-based logistic re-
gression (DLR) model that well addresses all the five aspects
to some extent. A key drawback of LR is that it assumes
a monotonic relationship between every numerical attribute
and the class probability, due to its linear formulation. How-
ever, such monotonicity is often false. For example, Fig-
ure 1 shows the ICU transfer rate versus the patients’ age
group. We can see that there is a non-monotonic relation-
ship. Based on kernel density estimation (KDE), DLR can
model non-monotonic and nonlinear relationships. More-
over, unlike LR, DLR can handle datasets with mixed data
types since its nonlinear transformation can be applied to
numerical and categorical attributes in a unified way. DLR
also inherits the advantages of LR, including time efficiency,
good interpretability, and support for multiway classifica-
tion, which are not offered by other nonlinear methods such
as SVM and KLR.

This paper contains the following contributions.
1) We propose DLR, a novel nonlinear classification model,

by integrating Bayesian analysis and kernel density estima-
tion into LR. DLR is much more efficient than other non-
linear models and can naturally handle mixed data types.
It also offers good interpretability and support for multiway
classification.

2) We develop a hierarchical optimization algorithm for
training DLR, which automatically learns free parameters
in the model under a maximum likelihood framework. This
optimization formulation not only learns the coefficients in
DLR, but also provides a way to automatically select the
kernel bandwidth in the Nadaraya-Watson estimator, which
is absent in previous work. This makes DLR a self-tuning
model without any free parameters.

3) We extend the DLR model to multiway classification
based on the same theory for binary LR. The hierarchical
optimization algorithm for binary DLR can also be applied
to the multiway case.

4) We conduct extensive evaluation on a large collection
of biomedical datasets, mixed-type datasets, and a real pa-
tient dataset for clinical prediction. The results show that
DLR compares favorably against other nonlinear methods
including SVM and KLR in terms of classification quality.
Moreover, DLR has much better efficiency and scalability –
requiring drastically less, often orders of magnitude lower,
training time than other kernel-based methods.

2. DENSITY-BASED LOGISTIC REGRES-
SION (DLR) MODEL

In this section, we first discuss the basics and limitations
of LR and then describe our new DLR model.

2.1 Limitations of LR
Assume we are given a dataset D = {xi, yi}, i = 1, · · · , N ,

xi ∈ RD, and yi ∈ {0, 1}. Let the input vector be x =
(x1, · · · , xD), and the class label y be binary: y can be either
1 or 0. LR is based on the following probability model:

p(y = 1|x) = σ(wTx) =
1

1 + exp(−wTx)

=
1

1 + exp(−
∑D
d=0 wdxd)

,
(1)

where w is a vector of weights that need to be learned. Note
that x0 = 1 represents a constant term. LR uses a maximum
likelihood optimization to learn the weight vector w.

Define

τ(x) = ln
p(y = 1|x)

p(y = 0|x)
. (2)

Lemma 1. LR models the following distribution of data:

τ(x) =

D∑
d=0

wdxd (3)

Proof. Based on the Bayesian rule, we find the probability

p(y = 1|x) =
p(y = 1|x)

p(y = 1|x) + p(y = 0|x)
(4)

=
1

1 + exp(−τ(x))
(5)

The lemma follows by comparing (1) with (5). �
From Lemma 1, we see that in a LR model: a) if wd > 0,

then p(y = 1|x) and τ(x) increase as xd increases, and b) if
wd < 0, then p(y = 1|x) and τ(x) decrease as xd increases.

Therefore, a severe drawback of LR is that it is reasonable
only if there is a monotonic relationship between p(y = 1|x)
and xd. However, this condition is often violated. For exam-
ple, as we show in Figure 1, the probability of ICU transfer
is not in a monotonic relationship with the age attribute.
KLR and SVM can model non-monotonic relationships be-
tween p(y = 1|x) and xd. However, KLR and SVM have
many other limitations such as high computational cost and
low interpretability.

2.2 DLR and its feature transformation
We derive an attribute transformation for LR based on

Bayesian rules. For simplicity of presentation, we first dis-
cuss the case where the class label y is binary: y ∈ {0, 1}
and extend it to the multiway case later. The proposed
DLR model follows the parametric form of LR in (1), but
transforms each attribute xd to a feature φd(x):

p(y = 1|x) = σ(wTφ) =
1

1 + exp(−wTφ)

=
1

1 + exp(−
∑D
d=0 wdφd(x))

,
(6)



where φ0 = 1. For each d = 1, · · · , D, the proposed DLR
feature transformation φd is

φd(x) = ln
p(y = 1|xd)
p(y = 0|xd)

− D − 1

D
ln
p(y = 1)

p(y = 0)
. (7)

The first term in (7) relates to the likelihood of y = 1 given

xd. The second term D−1
D

ln p(y=1)
p(y=0)

can be viewed as a bias

of the dataset. Hence, φd(x) gives an unbiased measurement
of the quantity sought after by the LR formulation based on
the Bayesian explanation.

Lemma 2. If all the attributes of x = (x1, · · · , xD) are
conditionally independent given the label y, then:

p(x, y) =

D∏
d=1

(
p(xd, y)

p(y)
D−1
D

)
(8)

Proof. Given that all variables are conditionally indepen-
dent, we know p(x|y) =

∏D
d=1 p(xd|y). It follows that

p(x, y) = p(x|y)p(y) = p(y)
D∏
d=1

p(xd|y)

=

∏D
d=1 p(xd|y)p(y)

p(y)D−1
=

∏D
d=1 p(xd, y)

p(y)D−1

=

D∏
d=1

(
p(xd, y)

p(y)
D−1
D

) (9)

�
Theorem 1. For a dataset, if all the attributes of x are
conditionally independent given the label y, then the DLR
function (6) with w0 = 0 and wd = 1 for d = 1, · · · , D
models the true distribution of data.
Proof. Following a similar proof as in Lemma 1, we know
that DLR models the following distribution of data:

τ(x) =

D∑
d=0

wdφd(x) =

D∑
d=1

φd(x). (10)

It remains to show that (10) is true for the given dataset.
Based on conditional independence and Lemma 2, we have

τ(x) = ln
p(y = 1|x)

p(y = 0|x)
= ln

p(x, y = 1)

p(x, y = 0)

= ln

∏D
d=1

(
p(xd, y = 1)/p(y = 1)

D−1
D

)
∏D
d=1

(
p(xd, y = 0)/p(y = 0)

D−1
D

)
= ln

∏D
d=1

(
p(y = 1|xd)p(xd)/p(y = 1)

D−1
D

)
∏D
d=1

(
p(y = 0|xd)p(xd)/p(y = 0)

D−1
D

)
= ln

∏D
d=1

(
p(y = 1|xd)/p(y = 1)

D−1
D

)
∏D
d=1

(
p(y = 0|xd)/p(y = 0)

D−1
D

)
=

D∑
d=1

(
ln
p(y = 1|xd)
p(y = 0|xd)

− D − 1

D
ln
p(y = 1)

p(y = 0)

)

=

D∑
d=1

φd(x)

�

Theorem 1 shows that, under the conditional indepen-
dence assumption, DLR with w0 = 0 and wd = 1 for d =
1, · · · , D perfectly models the distribution of data.

We also observe some connections between the naive Bayes
(NB) model and DLR. NB first models p(xd|y) and then uses
the Bayesian rule to figure out p(y|x), while DLR directly
models p(y|xd). Although DLR makes the same assumption
of conditional independence as NB does, it is not rigidly tied
to this assumption as NB does. NB can be viewed as a spe-
cial case of DLR. DLR is more general as it incorporates
the discriminative ability of LR and the generative power of
NB.

2.3 Kernel density estimation for φ

We have proposed the transformation φ for DLR in (7).
Now we estimate the probabilities in (7). Given training
data D = {xi, yi}, i = 1, · · · , N , we need to estimate φd(x)
for each d. Divide D into two subsets D1 and D0, which
contain data samples with y = 1 and y = 0, respectively.

Two quantities are needed for computing φd(x) in (7):
p(y|xd) and p(y). p(y) can be estimated by simply counting
the proportion of y in D, i.e.

p̂(y = k) =
|Dk|
N

, k = 0, 1. (11)

To estimate p(y|xd), we distinguish the cases of categorical
and numerical attributes.

If an attribute xd takes categorical values, p(y = k|xd)
can be estimated by the proportion of samples with y = k
among all the samples whose dth attribute is xd. Thus, it
can be easily computed using simple counting:

p̂(y = k|xd) =
|Dk

⋂
Dxd |

|Dxd |
, k = 0, 1, (12)

where Dxd = {xi | xi,d = xd, i = 1, · · · , N} is the set of sam-
ples in D whose dth attribute is xd. Note that we use xi,d to
denote the dth attribute of the ith sample xi. Substituting
(11) and (12) into (7), we have:

φd(x) = ln
|D1

⋂
Dxd |

|D0

⋂
Dxd |

− D − 1

D
ln
|D1|
|D0|

. (13)

If an attribute xd takes numerical values, we propose to
use a Nadaraya-Watson type kernel density estimator to es-
timate p(y = k|xd), k = 0, 1.

According to the Nadaraya-Watson estimator [1], we have:

p̂(y = k|xd) =

∑
i∈Dk

K(
xd−xi,d
hd

)∑N
i=1K(

xd−xi,d
hd

)
(14)

where K(x) is a kernel function satisfying K(x) ≥ 0 and∫
K(x)dx = 1, and hd > 0 is a parameter called the band-

width of the kernel density function. In this paper, we choose
the Gaussian kernel for K(x), namely,

K(x) =
1√
2π

exp(−x
2

2
). (15)

Substituting the estimates in (14) into (7), we have our
transformation for the dth dimension:

φd(x) = ln

∑
i∈D1

K(
xd−xi,d
hd

)∑
i∈D0

K(
xd−xi,d
hd

)
− D − 1

D
ln
|D1|
|D0|

. (16)



Using the Gaussian kernel, we have:

φd(x) = ln

∑
i∈D1

exp(− (xd−xi,d)2

2h2
d

)∑
i∈D0

exp(− (xd−xi,d)2

2h2
d

)
− D − 1

D
ln
|D1|
|D0|

. (17)

(17) gives the full closed form of φd(x) for a numerical xd.
In essence, we use a Bayesian explanation of LR to de-

rive a “reasonable” feature transformation in (7), and then
use a kernel density estimator to compute the conditional
probabilities in (7).

3. LEARNING ALGORITHM FOR DLR
Now we develop an algorithm for learning the parame-

ters in the DLR model, including the weights w and the
bandwidth hd in the Nadaraya-Watson estimator for each
numerical attribute xd.

For each input xi, define bi = p(yi = 1|xi) as given in
(6). The objective of our optimization is to minimize the
negative logarithm of the likelihood without any constraints,
also known as the cross-entropy error function:

E(w,h) =− ln p(y|w,h)

=−
N∑
i=1

{yi ln bi + (1− yi) ln(1− bi)},
(18)

where h is the vector of all the hd, 1 ≤ d ≤ D, where xd
is a numerical attribute (since categorical attributes do not
need a Nadaraya-Watson estimator).

We minimize E(w,h) by performing gradient descent in
the w and h spaces, based on the training set and validation
set, respectively. We first compute the derivative of E with
respect to hd. The derivatives of E with respect to w are
well studied in LR and easy to compute.

3.1 Kernel bandwidth selection
In each Nadaraya-Watson estimator for xd, d = 1, · · · , D,

we need to set its bandwidth hd. A common method in pre-
vious works use rules-of-thumb to set a heuristic hd values.
A popular one is the Silverman’s rule of thumb [16]:

h∗d = 1.06σN−1/5, (19)

where σ is the standard deviation of xd.
Although such rules-of-thumb often give solid performance,

based on the DLR framework, we can in fact derive a novel
way to automatically choose optimal hd. Such automatic
tuning is absent in previous work. We propose to find the
hd that minimizes E in (18). For this minimization, we first
need to find ∂E

∂hd
. Let rd = − 1

2h2
d

, according to (16), we have

φd(x) = ln

∑
i∈D1

exp(rd(xd − xi,d)2)∑
i∈D0

exp(rd(xd − xi,d)2)
− D − 1

D
ln
|D1|
|D0|

=g1 − g0 − S,
(20)

where

gj = ln
∑
i∈Dj

exp(rd(xd − xi,d)2), j = 0, 1, (21)

and S =
D − 1

D
ln
|D1|
|D0|

. (22)

Thus, the derivative of φd(x) over rd is

∂φd(x)

∂rd
=
∂g1
∂rd
− ∂g0
∂rd

. (23)

Moreover, for j = 0, 1,

∂gj
∂rd

=

∑
i∈Dj

[(xd − xi,d)2 · exp(rd(xd − xi,d)2)]∑
i∈Dj

exp(rd(xd − xi,d)2)

=

∑
i∈Dj

[(xd − xi,d)2 ·K(
xd−xi,d
hd

)]∑
i∈Dj

K(
xd−xi,d
hd

)

(24)

Now we calculate the derivatives of ln bi and ln(1− bi) over
rd which are needed in ∂E

∂rd
. According to (1), we have

∂ ln bi
∂rd

=
exp(−

∑D
d=1 wdφd(xi))

1 + exp(−
∑D
d=1 wdφd(xi))

wd
∂φd(xi)

∂rd

=(1− bi)wd
∂φd(xi)

∂rd
,

(25)

and

ln(1− bi) = ln
exp(−

∑D
d=1 wdφd(xi))

1 + exp(−
∑D
d=1 wdφd(xi))

=−
D∑
d=1

wdφd(xi) + ln bi,

(26)

∂ ln(1− bi)
∂rd

= −wd
∂φd(xi)

∂rd
+
∂ ln bi
∂rd

= −biwd
∂φd(xi)

∂rd
(27)

Using (27) and (25), we get the following derivative of
(18):

∂E

∂rd
=−

N∑
i=1

{yi
∂ ln bi
∂rd

+ (1− yi)
∂ ln(1− bi)

∂rd
}

=

N∑
i=1

(bi − yi)wd
∂φd(xi)

∂rd
.

(28)

Then, since rd = − 1
2h2

d
, we get:

∂E

∂hd
=
∂E

∂rd
· ∂rd
∂hd

=
1

h3
d

N∑
i=1

(bi − yi)wd
∂φd(xi)

∂rd
. (29)

Finally, we substitute (23) and (24) into (29) and get the
full closed-form expression of ∂E

∂hd
.

3.2 Hierarchical optimization
We have obtained first-order derivative ∂E

∂hd
in (29). How-

ever, the second-order derivatives for h are hard to compute.
And optimizing both w and h on the same set would simply
result in a trivial solution where all h are 0. Therefore, it is
difficult to perform Newton’s method in the joint space of w
and h. To address this issue, we propose to learn w and h
separately by a hierarchical optimization framework, shown
in Algorithm 1, which contains two levels of optimization:
an outer loop which optimizes h using simple gradient de-
scent on validation set, and an inner loop which optimizes
w using Newton’s method on training set under fixed h.

Similar to tuning free hyperparameters in SVM [2], we di-
vide the dataset into the training set, validation set, and test



Algorithm 1 Hierarchical optimization for DLR learning

1: Initialize h using (19)
2: repeat . outer loop: optimize h
3: Assemble the feature matrix Φ under h
4: repeat . inner loop: fix h and optimize w
5: w← w− ∇wE

∇2
wE

. on the training set

6: until w converges
7: for d = 1 to D do . fix w and update hd
8: if xd is a numerical attribute then
9: hd ← hd − γ ∂E

∂hd
. on the validation set

10: end if
11: end for
12: until h converges

set. In the outer level, at each iteration, the feature matrix
Φ, composed of φ(xi) for i = 1, · · · , D, is updated based
on the new h (Line 3). If a variable xi is categorical, φ(xi)
is computed by (13). For a numerical variable xd, we use
the kernel density estimation in (16) to compute its feature
φd(xi). Then, entering the inner level, we fix h and optimize
w by Newton’s method using the training set (Lines 4-6). In
fact, given Φ, we can use any standard LR package to im-
plement Lines 4-6 and leverage its mature implementation.
Finally, we optimize h for numerical attributes by perform-
ing gradient descent along the direction given in (29) using
the validation set (Lines 7-11).

From Algorithm 1, we can derive two variants of DLR. We
call the complete algorithm DLR-h since it automatically
chooses h. If we fix h at its initial rules-of-thumb values
given in (19) and skip the optimization steps in Lines 7-
11, we call this algorithm DLR. In the experimental result
section, we will evaluate both DLR and DLR-h.

3.3 Extension to multiway classification
It is straightforward to extend DLR to multiway problems.

We outline the main steps here. Assume there are C classes.
We have, for k = 1, · · · , C, the DLR model is as follows:

p(y = k|x) =
exp(wT

k φk(x))∑C
j=1 exp(wT

j φj(x))
(30)

where wk = (wk,1, · · · , wk,D) is the weight coefficient vector
for class k and φk = (φk,1, · · · , φk,D) is feature transforma-
tion for class k, defined as:

φk,d(x) = ln p(y = k|xd)−
D − 1

D
ln p(y = k). (31)

If xd is a numerical attribute, we estimate p(y = k|xd) by a
Nadaraya-Watson estimator,

p(y = k|xd) = ln

∑
i∈Dk

exp(− (xd−xi,d)2

h2
d

)∑N
i=1 exp(− (xd−xi,d)2

h2
d

)
, (32)

where Dk ⊆ D is the subset of data in class k.
Like binary DLR, multiway DLR learns w and h by min-

imizing the negative logarithm of likelihood:

E(w,h) = −
N∑
i=1

C∑
k=1

1yi=k ln p(yi = k|xi) (33)

where 1yi=k is 1 when yi = k and 0 otherwise. Let bi,k =
p(yi = k|xi), we have:

∂ ln bi,k
∂rd

=

C∑
j=1

(
1(j=k) − bi,j

)
w

(d)
j

∂φj,d(xi)

∂rd
(34)

As in (23) and (24), we have

∂φj,d(xi)

∂rd
=

∑
i∈Dj

[(xd − xi,d)2 · exp(rd(xd − xi,d)2)]∑
i∈Dj

exp(rd(xd − xi,d)2)

−
∑N
i=1[(xd − xi,d)2 · exp(rd(xd − xi,d)2)]∑N

i=1 exp(rd(xd − xi,d)2)

Some simple calculation based on (33) and (34) gives:

∂E

∂hd
=
∂E

∂rd

∂rd
∂hd

=
1

h3
d

N∑
i=1

C∑
k=1

C∑
j=1

yi,k
(
bi,j − 1(j=k)

)
wj,d

∂φj,d(xi)

∂rd

Given ∂E
∂hd

, Algorithm 1 can also be used for training the

multiway DLR model.

4. DISCUSSION: A NEW PROBABILISTIC
DISCRIMINATIVE KERNEL

In this section, we discuss the DLR model from the per-
spective of kernel methods and illustrate that the DLR ker-
nel is a valid and good kernel. We also point out its differ-
ence from some existing kernels.

It is known that the LR and SVM models can be studied
under a unified view [1, 11]. They both pursue the goal of
minimizing a regularized error function as follows:

min
w

E =
1

2
||w||2 + C

∑
i

g(−yi ·wxi) (35)

The regularized LR model adopts the logistic loss where

g(η) = ln(1 + eη), (36)

and the SVM model utilizes the hinge loss, i.e.

g(η) = max(1− η, 0) (37)

Using the Representer Theorem, both models can be com-
bined with the kernel trick to gain the ability of nonlinear
separation.

From this perspective, the proposed DLR model can be
viewed as taking the logistic loss as in LR. However, DLR
uses the following kernel:

kDLR(x,x′) = φ(x)φ(x′) =

D∑
d=1

φd(x)φd(x
′)

=

D∑
d=1

kd(x,x
′)

(38)

where the transformation φd here takes the form in (7) and
kd(x,x

′) = φd(x)φd(x
′).

To some extent, a kernel defines the similarity between
two data samples. For example, the Gaussian kernel inter-
prets similarity based on distance. According to (7) and as
discussed in section 2.2, each φd indicates the “likelihood”
of y being labelled 1 given xd. Thus, the kernel in the DLR



model defines the similarity of two instances by their “likeli-
hood” of having the same label. Specifically, kd(x,x

′) repre-
sents the similarity of the dth attribute of these two samples,
and the overall similarity is the sum of similarities at each
dimension. We can observe this fact by distinguishing the
following cases:

• If xd and x′d both indicate high likelihood of being la-
belled 1 (or 0), then both φd(x) and φd(x

′) are positive
(or negative) and kd(x,x

′) is large.

• If xd and x′d indicate high likelihood of different labels,
then φd(x) and φd(x

′) will have different signs and
kd(x,x

′) will be negative.

Obviously, the DLR kernel in (38) is a valid kernel since it
is the inner product in the feature space and thus the kernel
matrix is always positive definite. For a perfect kernel, we
need k(x,x′) to satisfy the condition that k(x,x′) > 0 when
y = y′ and k(x,x′) < 0 when y 6= y′ as stated in [4]. When
a kernel strictly satisfies this condition, all the instances in
the dataset would be perfectly classified without any error.
From the above analysis, we see that the DLR kernel closely
correlates to this condition, as it can be seen as a probabilis-
tic implementation of this condition. Thus, the DLR kernel
is not only a valid kernel, but also a good kernel.

Different from most existing kernels like the polynomial
kernel and the Gaussian kernel, our kernel considers the
label information by discriminative conditional probability,
which leads to a better measurement of similarity, while ex-
isting kernels such as the Gaussian kernel do not consider
the label information in y.

We can observe from (38) that the DLR kernel can be
expressed in an additive form of kernels operating on each
dimension, known as the additive kernel [12]. Thus, any
classifiers using the DLR kernel inherit the good properties
of additive kernels such as fast training and evaluation.

5. RELATED WORK
LR can also be studied from a Bayesian perspective, al-

though exact Bayesian inference is infeasible and some ap-
proximation such as Laplace approximation is needed [9].
A dual algorithm for KLR using ideas similar to the SMO
algorithm for SVM is proposed in [11]. The import vector
machine (IVM) incorporates the loss function of KLR in a
SVM framework [20]. IVM shares some advantages with
LR, including the abilities to estimate the underlying prob-
ability and generalize to multi-class problems. Compared to
these complex methods such as Bayesian logistic regression
and IVM, our approach requires only a simple preprocess-
ing to transform the input variables and requires solving a
single unconstrained optimization problem as LR does. It
also retains the advantages of LR over SVM.

Raina et al. proposed a hybrid generative/discriminative
model for classification [15]. They also arrived at a form that
transforms each variables xd into a feature φd = ln(p(xd, y =
1) − ln(p(xd, y = 0). However, it only considers the case
where xd takes discrete values. Moreover, the probabilities
p(xd, y = 1) and p(xd, y = 0) are learned using a NB model,
which requires many samples and does not work for continu-
ous xd. In contrast, we use a smooth kernel density estima-
tion which accommodates continuous xd and requires fewer
samples. We also optimize the bandwidth hd automatically.

There are other related probabilistic kernels most of which
aim at combining generative models with discriminative ones.
Jaakkola and Haussler proposed using generative techniques
in discriminative classification models [8]. They proposed
to use the Fisher score from generative models to generate
a kernel, which is in turn used in discriminative models.
However, such generative kernels are only suitable for some
domain-specific tasks and different tasks require different
generative models. For example, the Fisher kernel of sequen-
tial data such as DNA is often derived from a hidden Markov
model (HMM) [7], while the the kernel for text segmentation
is often derived from LDA [17]. A more general probabilistic
kernel is the marginalized kernel [10] for classifying graphs.
However, it still requires a domain-specific generative model.
A discriminative kernel is introduced in [19] where the map-
ping function is also based on ln(p(y|x, θ)). However, it
still relies on a particular generative model such as HMM
to which θ belongs. Compared to these model-driven ker-
nels [4], our DLR kernel does not assume any underlying
models for data samples and uses the Nadaraya-Watson ker-
nel density estimator to approximate p(y|x), which results
in a general classification approach that can be potentially
used in a wide range of applications.

Our DLR model can also be considered a special case of
the generalized additive model (GAM) [5]. GAM specifies

a distribution g(E(y)) =
∑D
d=1 fd(xd) , where g is known

as the link function and fd is the basis function. The pro-

posed DLR model is equivalent to using ln p(y=1|x)
p(y=0|x) in (2)

as the link function and wdφ(xd) as the basis function. In
particular, DLR is closely related to additive logistic regres-
sion (ALR) [5], a GAM model for nonlinear classification.
They use the same link function. However, rather than using
splines as basis functions in ALR, we adopt the logarithm of
kernel smooth functions as in (7). In addition, ALR is pro-
hibitively time-consuming for high dimensional datasets due
to the slow convergence of its backfitting algorithm. Also,
It cannot naturally handle mixed data types as DLR does.

6. EXPERIMENTAL RESULTS
We conduct extensive experiments to evaluate DLR. We

evaluate two versions of DLR: DLR with a fixed h given in
(19) (denoted as DLR), and DLR with automatic tuning of h
(DLR-h). For comparison, we also consider seven other clas-
sification methods, including logistic regression (LR), SVM
with polynomial kernel (SVM-p) and RBF kernal (SVM-r),
least square SVM [18] with polynomial kernel (LSSVM-p)
and RBF kernal (LSSVM-r), and kernel logistic regressions
with polynomial kernel (KLR-p) and RBF kernal (KLR-r).
For all the datasets, we perform a standard normalization
of the features. The normalization is especially helpful for
SVMs. All algorithms are implemented in Matlab. The op-
timization in LR and DLR used the minFunc function in
Matlab. The SVM package is implemented by Bottou and
Lin in the Matlab Bioinformatics Toolbox, and the LSSVM
package is the LS-SVMlab Toolbox. The regularization and
kernel width parameters of SVM are also tuned on the vali-
dation set. All experiments are performed on a desktop with
2.67GHz CPU and 2G memory running Windows 7.

6.1 Illustrations on toy cases
For sanity check and illustration, we test on a simple 2-D

dataset as shown Figure 2. It contains 1200 points, cho-
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Figure 2: A simple 2-D dataset. The two classes are
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Figure 3: Probability output of LR. The decision
boundary is at p = 0.5.

sen from 4 multivariate normal distributions with a mean
of [10, 0], [−10, 0], [0, 10] and [0,−10], respectively. The co-
variances of former two distributions are σ = [1, 0; 0, 100]
while the last two distributions are σ = [100, 0; 0, 1]. The
two classes are marked in different colors.

We plot the decision boundary of LR and DLR in Fig-
ure 3 and Fig. 4, respectively. We can see that the decision
boundary of LR is linear, leading to a low accuracy of 51.3%.
On the other hand, DLR gives a very nice nonlinear decision
boundary and has an accuracy of 89.3%.

We also illustrate the process of Algorithm 1 which au-
tomatic tunes the kernel bandwidth h. As we explained
before, a benefit of DLR compared to SVM is that it can
naturally handle multi-class classification. In Figure 5, we
illustrate the change of decision boundaries by tuning h on
a three-class dataset. We can see that Algorithm 1 quickly
converges to a near optimal h in only three iterations.

6.2 Results on numerical data
We test all the methods on five biomedical datasets from

the UCI repository [3]. They have binary classes and numer-
ical features. For each dataset, we run 100 experiments with
different random 70/30 split for training/testing and report
the averaged results. Table 1 and 2 compare the accuracy
and AUC of various methods, respectively. We observe that
DLR and DLR-h perform better than other methods in most
datasets. We also see that, while DLR gives consistently
good performance using the rule-of-thumb value of h, DLR-
h achieves better accuracy than DLR on all the datasets.

Table 3 shows the training times. LR has the least running
time while DLR is the second fastest and drastically more
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Figure 4: Probability output of DLR. The decision
boundary is at p = 0.5.

efficient than KLR and SVM. DLR-h is slower than the DLR
model since it tunes h, but it is still much faster than KLR
and SVM in most cases. The main reason for the efficiency
of DLR is that it optimizes a problem with D unknowns
while kernel-based SVM and KLR search in a space with N
unknowns, and typically D � N .

6.3 Results on categorical and mixed data
Another advantage of DLR is its ability to naturally han-

dle categorical variables. We evaluate our algorithms on
three datasets with categorical features from the UCI repos-
itory. For DLR and DLR-h, a categorical variable x is trans-
formed into a numerical feature φ(x) based on density esti-
mation in (16). For other methods, we use a typical way to
handle categorical variables. For each variable that has m
categories, we transform it into m numbers with only one of
the numbers being 1 and the others being 0. Tables 4, 5,
and 6 show the accuracy, AUC, and training time of various
methods on these datasets, respectively. DLR and DLR-h
have the same performance on tic-tac and monk datasets
since both have categorical features only and there is no hd
to tune. SPECFT heart data have mixed types. We can
see that DLR and DLR-h are high competitive with, if not
better than, all other methods. However, a huge advantage
of DLR and DLR-h is their time efficiency – they are orders
of magnitude faster than other kernel based classifiers.

6.4 Real-world clinical prediction
Our research is motivated by a project in collaboration

with the Barnes-Jewish Hospital (BJH), one of the largest
hospitals in the US. Our task is to predict potential ICU
transfers for hospitalized patients, based on 34 vital signs.
We use a number of techniques to process the features, and
the details of this process are reported in [13,14]. In a clinical
trial at BJH, three algorithms, LR, SVM-r and DLR-h, are
tested on more than 18,458 patients admitted from 01/14/11
to 04/23/12. Table 7 shows the results in terms of a few met-
rics that are important for clinical practice. We can see that
DLR-h improves LR and SVM-r on most metrics. In par-
ticular, it significantly improves AUC, which measures the
overall performance. Specificity and sensitivity are tradeoff
that can be tuned in DLR-h by changing the threshold. We
set DLR-h to have a specificity that is very close to SVM-r’s.
To study the scalability, we test different randomly chosen
training datasets with various sizes. Figure 6 compares the
training time with respect to the size of training data. We
can see that DLR-h is much more efficient than SVM-r.
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Figure 5: The process of optimizing the kernel density bandwidth h in DLR-h using Algorithm 1.

Table 1: Accuracy (%) of various methods on numerical data.
Data set LR KLR-p KLR-r SVM-p SVM-r LSSVM-p LSSVM-r DLR DLR-h

Wisconsin breast cancer 93.9 93.0 96.5 93.9 97.3 94.3 95.2 96.5 96.5
hepatitis 85.2 80.4 84.3 84.6 85.0 76.5 84.3 86.2 88.2

ionosphere 85.1 82.8 93.1 84.6 94.4 82.9 86.9 93.1 93.1
Cleveland heart disease 84.5 79.7 83.8 75.0 84.1 62.6 67.7 85.1 85.1
Pima Indians diabetes 74.7 74.0 75.0 70.8 77.7 72.0 74.3 75.5 77.8

Table 2: AUC of various methods on numerical data.
Data set LR KLR-p KLR-r SVM-p SVM-r LSSVM-p LSSVM-r DLR DLR-h

Wisconsin breast cancer 0.9923 0.9534 0.9835 0.9890 0.9970 0.6610 0.9980 0.9960 0.9960
hepatitis 0.8004 0.5000 0.5207 0.8049 0.8520 0.8732 0.8450 0.8580 0.8781

ionosphere 0.8711 0.9264 0.9635 0.7994 0.9650 0.9695 0.6220 0.9890 0.9695
Cleveland heart disease 0.8060 0.5000 0.6053 0.8217 0.8270 0.7810 0.8790 0.8128 0.8134
Pima Indians diabetes 0.8602 0.5000 0.6322 0.5949 0.8310 0.7665 0.8230 0.8410 0.7873

Table 3: Training time (ms) of various methods on numerical data.
Data set LR KLR-p KLR-r SVM-p SVM-r LSSVM-p LSSVM-r DLR DLR-h

Wisconsin breast cancer 46.8 1700.4 312.2 2620.8 2143.4 421.2 374.4 296.4 702.0
hepatitis 62.4 842.4 124.8 93.6 320.0 249.6 265.2 78.5 249.5

ionosphere 64.7 1154.4 1201.2 421.2 3842.6 358.8 234.0 124.8 546.0
Cleveland heart disease 31.2 1060.8 1154.8 499.2 830.0 390.0 280.8 123.0 604.2
Pima Indians diabetes 62.4 3042.0 3556.8 22245.7 6750.0 436.8 265.2 452.4 764.4

Table 4: Accuracy (%) of various methods on categorical and mixed data.
Data set LR KLR-p KLR-r SVM-p SVM-r LSSVM-p LSSVM-r DLR DLR-h
tic-tac 95.9 98.1 97.5 98.1 98.4 97.2 97.2 98.1 98.1

monk problem 69.8 97.3 97.3 97.3 98.6 97.1 96.5 97.3 97.3
SPECFT heart data 57.8 65.6 74.5 63.3 82.4 62.7 62.7 77.8 87.6

Table 5: AUC of various methods on categorical and mixed data.
Data set LR KLR-p KLR-r SVM-p SVM-r LSSVM-p LSSVM-r DLR DLR-h
tic-tac 0.9020 0.9489 0.9489 0.9462 0.9516 0.9510 0.9441 0.9457 0.9457

monk problem 0.9968 0.9912 0.9981 0.8747 0.9200 0.9993 0.9992 0.9979 0.9979
SPECFT heart data 0.7872 0.6839 0.5618 0.7691 0.8272 0.7277 0.7758 0.7898 0.8488

Table 6: Training time (ms) of various methods on categorical and mixed data.
Data set LR KLR-p KLR-r SVM-p SVM-r LSSVM-p LSSVM-r DLR DLR-h
tic-tac 218.4 8907.6 1872.0 11548.7 3166.8 514.8 327.6 46.8 46.8

monk problem 187.2 1388.4 795.6 12230.4 567.2 452.4 374.4 31.3 31.2
SPECFT heart data 145.8 530.4 171.6 1716.0 2210.4 468.0 226.7 45.7 62.4



Table 7: Prediction performance on clinical data.
AUC Specificity Sensitivity PPV NPV Accuracy

LR 0.7714 0.9493 0.2963 0.2500 0.9594 0.9141
SVM-r 0.6715 0.9520 0.3909 0.2908 0.9689 0.9194
DLR-h 0.8724 0.9493 0.4074 0.3143 0.9654 0.9201
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Figure 6: Training time on the clinical data. Note
that the y-axis is in log scale.

7. CONCLUSIONS
In this paper, we have proposed a novel DLR model for

classification. DLR integrates kernel density estimation and
the discriminative power of logistic regression. DLR uses a
novel nonlinear feature transformation derived from a Bayesian
explanation of its parametric form, and a Nadaraya-Watson
kernel density estimator for assessing the conditional prob-
abilities in the transformation. We have also derived a hier-
archical optimization algorithm for learning the model coef-
ficients and kernel bandwidths in an integrated way. DLR
competently supports nonlinear separation, efficient train-
ing, mixed data types, multiway classification, and good in-
terpretability, a combination of advantages that is rarely
found in existing methods. Extensive results on real-world
numerical and categorical data show that, compared to other
leading methods, DLR gives comparable and often better
classification quality while being orders of magnitude more
efficient.

We believe that, because of its unmatched performance,
versatility, efficiency, and interpretability, DLR will become
a popular general-purpose classification approach for many
real applications.
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