CSE 554
Lecture 10: Extrinsic Deformations

Fall 2016
Review

- Non-rigid deformation
 - **Intrinsic** methods: deforming the boundary points
 - An optimization problem
 - Minimize shape distortion
 - Maximize fit
 - Example: Laplacian-based deformation

![Diagram showing Before and After deformation](image)
Extrinsic Deformation

- Given source and target point pairs (handles)
- Compute deformation of any point in the plane or volume
 - Not just points on the boundary curve or surface
Extrinsic Deformation

- Applications
 - Registering contents between images and volumes
 - Interactive animation
Techniques

- Thin-plate spline deformation
- Free form deformation
- Cage-based deformation
Thin-Plate Spline

- A minimization problem
 - Minimizing distances between source and target points
 - Minimizing distortion of the space
- There is a closed-form solution
 - Solving a linear system of equations
Thin-Plate Spline

- Input
 - Source points: p_1, \ldots, p_n
 - Corresponding target points: q_1, \ldots, q_n

- Output
 - A deformation function $f[p]$ (p is any point)
Thin-Plate Spline

- Minimization formulation

\[E = E_f + \lambda E_d \]

- \(E_f \): fitting term
 - Measures how close is the deformed source to the target
- \(E_d \): distortion term
 - Measures how much the space is warped
- \(\lambda \): weight
 - Controls how much distortion is allowed
Thin-Plate Spline

- Fitting term
 - Minimizing sum of squared distances between deformed source points and target points

\[E_f = \sum_{i=1}^{n} \| f[p_i] - q_i \|^2 \]
Thin-Plate Spline

- Distortion term
 - Penalizes non-linear deformation:

\[
E_d = \int \int \left(\left(\frac{\partial^2 f}{\partial x^2} \right)^2 + 2 \left(\frac{\partial^2 f}{\partial x \partial y} \right)^2 + \left(\frac{\partial^2 f}{\partial y^2} \right)^2 \right)^2 \, dx \, dy
\]

- The energy is zero when the deformation is a linear transformation
 - Translation, rotation, scaling, shearing
Thin-Plate Spline

- Finding the minimizer for \(E = E_f + \lambda E_d \)
 - Uniquely exists, and has a closed form:

\[
f[p] = M \cdot p + \sum_{i=1}^{n} \phi[\|p - p_i\|] v_i
\]

where \(\phi[r] = r^2 \log[r] \)

- \(M \): a global transformation
- \(v_i \): translation vectors (one per source point)
- Both \(M \) and \(v_i \) are determined by \(p_i, q_i, \lambda \)
 - By solving a linear equation system
Thin-Plate Spline

- **Result**
 - At higher λ, the deformation is closer to an affine transformation

$$E = E_f + \lambda E_d$$

Credits: Sprengel et al, EMBS (1996)
Thin-Plate Spline

- Application: landmark-based image registration
 - Manual or automatic detection of landmarks and correspondences

Source Target Deformed source

Credits: Rohr et al, TMI (2001)
Thin-Plate Spline

- Application: landmark-based image registration
 - Manual or automatic detection of landmarks and correspondences

Credits: Rohr et al, TMI (2001)
Thin-Plate Spline

- **Pros**
 - Only requires scattered point correspondences
 - Closed-form solution makes it efficient to compute the deformation
 - Once the global transformation (M) and local vectors (v_i) are solved

- **Cons**
 - Solving M, v_i could be time-consuming for large number of handles
 - Not for interactive deformation (e.g., user moving the handles in real-time)
Free Form Deformation

- Uses a control lattice that embeds the shape
- Deforming the lattice points (control points) warps the embedded shape

Credits: Sederberg and Parry, SIGGRAPH (1986)
Free Form Deformation

- Blending the deformation at the control points (handles)
 - Each deformed point is a weighted sum of deformed lattice points
Free Form Deformation

- **Input**
 - Source control points: p_1, \ldots, p_n
 - Target control points: q_1, \ldots, q_n

- **Output**
 - A deformation function $f[p]$ for any point p within the space of the grid.

$$f[p] = \sum_{i=1}^{n} w_i[p] q_i$$

- $w_i[p]$: "influence" of p_i on p (regardless of q_i, so it can be pre-computed)
Free Form Deformation

- Desirable properties of the weights $w_i[p]$
 - Decreases with distance from p to p_i
 - So that the influence of each control point is local
 - Smoothly varies with location of p
 - So that the deformation is smooth
 - $1 = \sum_{i=1}^{n} w_i[p]$
 - So that $f[p] = \sum w_i[p] q_i$ is an affine combination of q_i
 - $p = \sum_{i=1}^{n} w_i[p] p_i$
 - So that $f[p] = p$ if the lattice stays unchanged
Free Form Deformation

- Finding weights (2D)
 - Let the lattice points be p_{ij} for $i=0,\ldots,k$ and $j=0,\ldots,l$
 - Compute p's relative location in the grid (s,t)
 - Let $(x_{\text{min}},x_{\text{max}}), (y_{\text{min}},y_{\text{max}})$ be the range of grid

 $$s = \frac{p_x - x_{\text{min}}}{x_{\text{max}} - x_{\text{min}}}$$
 $$t = \frac{p_y - y_{\text{min}}}{y_{\text{max}} - y_{\text{min}}}$$
Free Form Deformation

• Finding weights (2D)
 - Let the lattice points be \(p_{ij} \) for \(i=0,\ldots,k \) and \(j=0,\ldots,l \)
 - Compute \(p \)'s relative location in the grid \((s,t)\)
 - The weight \(w_{ij} \) for lattice point \(p_{ij} \) is:
 \[
 u_{i,j}[p] = \lambda_{i,j} B_i^k[s] B_j^l[t] \\
 w_{i,j}[p] = \frac{u_{i,j}[p]}{\sum_{i=0}^{k} \sum_{j=0}^{l} u_{i,j}[p]}
 \]
 - \(\lambda_{ij} \): importance of \(p_{ij} \)
 - \(B \): Bernstein basis function: \(B_i^k[s] = \binom{k}{i} s^i (1-s)^{k-i} \)
Free Form Deformation

- Finding weights (2D)
 - Weight distribution for one control point (max at that control point):

```
\begin{align*}
\text{w}_{1,1}[p] & \quad \text{at control point } p_{1,1}
\end{align*}
```
Free Form Deformation

- A deformation example
Free Form Deformation

- Image registration
 - Embed the source in a lattice
 - Compute new lattice positions over the target
 - Manually or automatically
 - Deform each source pixel using FFD
Free Form Deformation

- Pros
 - Fast updates when control points are moved

- Cons
 - Too many control points (a lot of them are interior to the shape)
 - Cartesian grid is too inflexible for complex shapes
Cage-based Deformation

- Use a control mesh ("cage") to embed the shape
- Deforming the cage vertices warps the embedded shape

Credits: Ju, Schaefer, and Warren, SIGGRAPH (2005)
Cage-based Deformation

- “Blending” the deformation at the cage vertices

\[f[p] = \sum_{i=1}^{n} w_i[p] q_i \]

- \(w_i[p] \): pre-computed “influence” of \(p_i \) on \(p \)
- More challenging to compute than FFD: not regular lattice structure
Cage-based Deformation

- Finding weights (2D)
 - Problem: given a closed polygon (cage) with vertices p_i and an interior point p, find smooth weights $w_i[p]$ such that:

1) $1 = \sum_{i=1}^{n} w_i[p]$

2) $p = \sum_{i=1}^{n} w_i[p] \cdot p_i$
Cage-based Deformation

- Finding weights (2D)
 - A simple case: the cage is a triangle
 - The weights are unique (3 eqs, 3 vars)

\[
1 = w_1 + w_2 + w_3
\]

\[
p_x = w_1 p_{1,x} + w_2 p_{2,x} + w_3 p_{3,x}
\]

\[
p_y = w_1 p_{1,y} + w_2 p_{2,y} + w_3 p_{3,y}
\]

- \(w_i \) are known as the **barycentric coordinates** of \(p \)

\[
w_1 = \frac{\text{Area}_{p, p_2, p_3}}{\text{Area}_{p_1, p_2, p_3}}
\]
Cage-based Deformation

• Finding weights (2D)
 – The harder case: the cage is an arbitrary (possibly concave) polygon
 – The weights are not unique (“generalized barycentric coordinates”)
 • A good choice: Mean Value Coordinates (MVC) [Floater, 2003]

\[
\begin{align*}
 u_i(p) &= \frac{\tan[\alpha_i/2] + \tan[\alpha_{i+1}/2]}{||p_i - p||} \\
 w_i(p) &= \frac{u_i(p)}{\sum_{i=1}^{n} u_i(p)}
\end{align*}
\]
Cage-based Deformation

- Finding weights (2D)
 - Weight distribution of one cage vertex in MVC:

\[w_i[p_i] \]
Cage-based Deformation

- MVC be extended to 3D [Ju, 2005; Floater, 2005]
 - Other types of coordinates: Harmonic coordinates; Green coordinates; etc.
- Application: character animation
Cage-based Deformation

- Registration
 - Embed source in a cage
 - Compute new locations of cage vertices over the target
 - Deform source pixels using MVC or other generalized barycentric coordinates
Cage-based Deformation

• Pros
 – Fast update when control points are moving
 – Fewer control points and better fitting to shape than FFD

• Cons
 – Constructing the cage is mostly a manual process
 • Although there is some recent progress in automation

Sacht et al., Siggraph Asia 2015
Further Readings

- Thin-plate spline deformation
 - “Landmark-Based Elastic Registration Using Approximating Thin-Plate Splines”, by Rohr et al. (2001)

- Free form deformation

- Cage-based deformation
 - “Mean value coordinates for closed triangular meshes”, by Ju et al. (2005)
 - “Harmonic coordinates for character animation”, by Joshi et al. (2007)
 - “Green coordinates”, by Lipman et al. (2008)