CSE 554
Lecture 8: Alignment

Fall 2016
Review

- **Fairing (smoothing)**
 - Relocating vertices to achieve a smoother appearance
 - Method: centroid averaging

- **Simplification**
 - Reducing vertex count
 - Method: edge collapsing
Registration

- Fitting one model to match the shape of another
Registration

- Applications
 - Tracking and motion analysis
 - Automated annotation
Registration

- Challenges: global and local shape differences
 - Imaging causes global shifts and tilts
 - Requires alignment
 - The shape of the organ or tissue differs in subjects and evolve over time
 - Requires deformation

Brain outlines of two mice After alignment After deformation
Alignment

- Registration by translation or rotation
 - The structure stays “rigid” under these two transformations
 - Called rigid-body or isometric (distance-preserving) transformations
 - Mathematically, they are represented as matrix/vector operations
Transformation Math

- Translation
 - Vector addition: \(\mathbf{p}' = \mathbf{v} + \mathbf{p} \)

- 2D:
 \[
 \begin{pmatrix}
 p_x' \\
 p_y'
 \end{pmatrix} = \begin{pmatrix}
 v_x \\
 v_y
 \end{pmatrix} + \begin{pmatrix}
 p_x \\
 p_y
 \end{pmatrix}
 \]

- 3D:
 \[
 \begin{pmatrix}
 p_x' \\
 p_y' \\
 p_z'
 \end{pmatrix} = \begin{pmatrix}
 v_x \\
 v_y \\
 v_z
 \end{pmatrix} + \begin{pmatrix}
 p_x \\
 p_y \\
 p_z
 \end{pmatrix}
 \]
Transformation Math

- Rotation
 - Matrix product: \(\mathbf{p}' = R \cdot \mathbf{p} \)
 - 2D: \[
 \begin{pmatrix}
 p'_x \\
 p'_y
 \end{pmatrix} = R \cdot \begin{pmatrix}
 p_x \\
 p_y
 \end{pmatrix}
 \]
 \[
 R = \begin{pmatrix}
 \cos[\alpha] & -\sin[\alpha] \\
 \sin[\alpha] & \cos[\alpha]
 \end{pmatrix}
 \]
 - Rotate around the origin!
 - To rotate around another point \(q \):
 \[
 \mathbf{p}' = R \cdot (\mathbf{p} - \mathbf{q}) + \mathbf{q}
 \]
Rotation

Matrix product: \(\mathbf{p}' = \mathbf{R} \cdot \mathbf{p} \)

3D:
\[
\begin{pmatrix}
\mathbf{p}'_x \\
\mathbf{p}'_y \\
\mathbf{p}'_z
\end{pmatrix}
= \mathbf{R} \cdot
\begin{pmatrix}
\mathbf{p}_x \\
\mathbf{p}_y \\
\mathbf{p}_z
\end{pmatrix}
\]

Around X axis: \(\mathbf{R}_x =
\begin{pmatrix}
1 & 0 & 0 \\
0 & \cos[\alpha] & -\sin[\alpha] \\
0 & \sin[\alpha] & \cos[\alpha]
\end{pmatrix}
\)

Around Y axis: \(\mathbf{R}_y =
\begin{pmatrix}
\cos[\alpha] & 0 & \sin[\alpha] \\
0 & 1 & 0 \\
-\sin[\alpha] & 0 & \cos[\alpha]
\end{pmatrix}
\)

Around Z axis: \(\mathbf{R}_z =
\begin{pmatrix}
\cos[\alpha] & -\sin[\alpha] & 0 \\
\sin[\alpha] & \cos[\alpha] & 0 \\
0 & 0 & 1
\end{pmatrix}
\)

Any arbitrary 3D rotation can be composed from these three rotations.
Properties of an arbitrary rotational matrix

- **Orthonormal** (orthogonal and normal): \(R \cdot R^T = I \)

Examples:

\[
\begin{pmatrix}
\cos[\alpha] & -\sin[\alpha] \\
\sin[\alpha] & \cos[\alpha]
\end{pmatrix}
\begin{pmatrix}
\cos[\alpha] & \sin[\alpha] \\
-\sin[\alpha] & \cos[\alpha]
\end{pmatrix}
= \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}
\]

\[
\begin{pmatrix}
1 & 0 & 0 \\
0 & \cos[\alpha] & -\sin[\alpha] \\
0 & \sin[\alpha] & \cos[\alpha]
\end{pmatrix}
\begin{pmatrix}
1 & 0 & 0 \\
0 & \cos[\alpha] & \sin[\alpha] \\
0 & -\sin[\alpha] & \cos[\alpha]
\end{pmatrix}
= \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}
\]

- Easy to invert: \(R^{-1} = R^T \)
Transformation Math

- Properties of an arbitrary rotational matrix
 - Any orthonormal 3x3 matrix represents a rotation around some axis (not limited to X,Y,Z)
 - The angle of rotation can be calculated from the trace of the matrix
 - Trace: sum of diagonal entries
 - 2D: The trace equals \(2 \cos(a)\), where \(a\) is the rotation angle
 - 3D: The trace equals \(1 + 2 \cos(a)\)

Examples:
\[
\begin{pmatrix}
\cos[\alpha] & -\sin[\alpha] \\
\sin[\alpha] & \cos[\alpha]
\end{pmatrix}
\begin{pmatrix}
1 & 0 & 0 \\
0 & \cos[\alpha] & -\sin[\alpha] \\
0 & \sin[\alpha] & \cos[\alpha]
\end{pmatrix}
\]

- The larger the trace, the smaller the rotation angle
Alignment

- Input: two models represented as point sets
 - Source and target
- Output: locations of the translated and rotated source points
Alignment

- Method 1: Principal component analysis (PCA)
 - Aligning principal directions

- Method 2: Singular value decomposition (SVD)
 - Optimal alignment given prior knowledge of correspondence

- Method 3: Iterative closest point (ICP)
 - An iterative SVD algorithm that computes correspondences as it goes
Method 1: PCA

- Compute a shape-aware coordinate system for each model
 - Origin: Centroid of all points
 - Axes: Directions in which the model varies most or least
- Transform the source to align its origin/axes with the target
Basic Math

- Eigenvectors and eigenvalues
 - Let M be a square m-by-m matrix, v is an eigenvector and λ is an eigenvalue if:
 \[M \cdot v = \lambda \cdot v \]
 - Any scalar multiples of an eigenvector is also an eigenvector (with the same eigenvalue).
 - So an eigenvector should be treated as a “line”, rather than a vector
 - There are at most m non-zero eigenvectors
 - If M is symmetric, its eigenvectors are pairwise orthogonal
Method 1: PCA

• Computing axes: Principal Component Analysis (PCA)
 - Consider a set of points \(p_1, \ldots, p_n \) with centroid location \(c \)
 - Construct matrix \(P \) whose \(i \)-th column is vector \(p_i - c \)
 - 2D (2 by \(n \)): \(P = \begin{pmatrix} p_{1x} - c_x & p_{2x} - c_x & \cdots & p_{nx} - c_x \\ p_{1y} - c_y & p_{2y} - c_y & \cdots & p_{ny} - c_y \end{pmatrix} \)
 - 3D (3 by \(n \)): \(P = \begin{pmatrix} p_{1x} - c_x & p_{2x} - c_x & \cdots & p_{nx} - c_x \\ p_{1y} - c_y & p_{2y} - c_y & \cdots & p_{ny} - c_y \\ p_{1z} - c_z & p_{2z} - c_z & \cdots & p_{nz} - c_z \end{pmatrix} \)
 - Build the covariance matrix: \(M = P \cdot P^T \)
 - 2D: a 2 by 2 matrix
 - 3D: a 3 by 3 matrix
 - Symmetric!
Method 1: PCA

- **Eigenvectors** of the covariance matrix represent principal directions of shape variation (2 in 2D; 3 in 3D)

- **Eigenvalues** indicate amount of variation along each eigenvector
 - Eigenvector with largest (smallest) eigenvalue is the direction where the model shape varies the most (least)
Method 1: PCA

- **PCA-based alignment**
 - Let c_S, c_T be centroids of source and target.
 - First, translate source to align c_S with c_T:
 \[p_i^* = p_i + (c_T - c_S) \]
 - Next, find rotation R that aligns two sets of PCA axes, and rotate source around c_T:
 \[p_i' = c_T + R \cdot (p_i^* - c_T) \]
 - Combined:
 \[p_i' = c_T + R \cdot (p_i - c_S) \]
Method 1: PCA

- **Oriented** axes
 - 2D: Y is ccw from X
 - 3D: X, Y, Z follow right-handed rule
Method 1: PCA

• Finding rotation between two sets of oriented axes

 – Let A, B be two matrices whose columns are the axes

 • The axes are orthogonal and normalized (i.e., both A and B are orthonormal)

 – We wish to compute a rotation matrix R such that:

 $$ R \cdot A = B $$

 – Notice that A and B are orthonormal, so we have:

 $$ R = B \cdot A^{-1} = B \cdot A^T $$
Method 1: PCA

- How to get oriented axes from eigenvectors?
 - In 2D, two eigenvectors can define 2 sets of oriented axes (whose X,Y correspond to 1^{st} and 2^{nd} eigenvectors)
Method 1: PCA

- How to get oriented axes from eigenvectors?
 - In 3D, three eigenvectors can define 4 sets of oriented axes (whose X,Y,Z correspond to 1st, 2nd, 3rd eigenvectors)
Method 1: PCA

- Finding rotation between two sets of eigenvectors
 - Fix the orientation of the target axes.
 - For each possible orientation of the source axes, compute R
 - Pick the R with smallest rotation angle (by checking the trace of R)
 - Assuming the source is “close” to the target!
Method 1: PCA

- Limitations
 - Axes can be unreliable for circular objects
 - Eigenvalues become similar, and eigenvectors become unstable

Rotation by a small angle

PCA result
Method 1: PCA

- Limitations
 - Centroid and axes are affected by noise

![Diagram showing the effect of noise on PCA](image)
Method 2: SVD

- Optimal alignment between corresponding points
 - Assuming that for each source point, we know where the corresponding target point is.
Method 2: SVD

- **Formulating the problem**
 - Source points p_1, \ldots, p_n with centroid location c_S
 - Target points q_1, \ldots, q_n with centroid location c_T
 - q_i is the corresponding point of p_i
 - After centroid alignment and rotation by some R, a transformed source point is located at:
 $$ p_i' = c_T + R \cdot (p_i - c_S) $$
 - We wish to find the R that minimizes sum of pair-wise distances:
 $$ E = \sum_{i=1}^{n} \| q_i - p_i' \|^2 $$
Method 2: SVD

- An equivalent formulation
 - Let P be a matrix whose i-th column is vector $p_i - c_S$
 - Let Q be a matrix whose i-th column is vector $q_i - c_T$
 - Consider the cross-covariance matrix:
 \[M = P \cdot Q^T \]
 - Find the orthonormal matrix R that maximizes the trace:
 \[\text{Tr}[R \cdot M] \]
Method 2: SVD

- Solving the minimization problem
 - Singular value decomposition (SVD) of an m by m matrix M:
 \[M = U \cdot W \cdot V^T \]
 - U, V are m by m orthonormal matrices (i.e., rotations)
 - W is a diagonal m by m matrix with non-negative entries
 - Theorem: the orthonormal matrix (rotation) $R = V \cdot U^T$ is the one that maximizes the trace $\text{Tr}[R \cdot M]$
 - SVD is available in Mathematica and many Java/C++ libraries
Method 2: SVD

- SVD-based alignment: summary
 - Forming the cross-covariance matrix
 \[M = P \cdot Q^T \]
 - Computing SVD
 \[M = U \cdot W \cdot V^T \]
 - The optimal rotation matrix is
 \[R = V \cdot U^T \]
 - Translate and rotate the source:
 \[p_i' = c_T + R \cdot (p_i - c_S) \]
Method 2: SVD

- Advantage over PCA: more stable
 - As long as the correspondences are correct
Method 2: SVD

- Advantage over PCA: more stable
 - As long as the correspondences are correct
Method 2: SVD

- Limitation: requires accurate correspondences
 - Which are usually not available
Method 3: ICP

- Iterative closest point (ICP)
 - Use PCA alignment to obtain an initial alignment
 - Alternate between estimating correspondences (e.g., closest point) and aligning the corresponding points by SVD
 - Repeat until a termination criteria is met.
ICP Algorithm

- **Termination criteria**
 - A user-given maximum iteration is reached
 - The **improvement** of fitting is small
 - Root Mean Squared Distance (RMSD):
 \[
 \sqrt{\frac{\sum_{i=1}^{n} ||q_i - p_i'||^2}{n}}
 \]
 - Captures average deviation in all corresponding pairs
 - Stops the iteration if the difference in RMSD before and after each iteration falls beneath a user-given threshold
ICP Algorithm

RMSD: 0.219199

After PCA

RMSD: 0.0931637

After 1 iter

RMSD: 0.0557287

After 10 iter
ICP Algorithm
More Examples

After PCA

After ICP
More Examples

After PCA

After ICP