CSE 554

Course Projects

Fall 2016
Basic Requirement

• Using geometric algorithms to solve real-world problems in biomedicine
 – Not limited to algorithms in the Modules
 – Not necessary to completely solve the problem, but need to show sufficient progress towards a solution

• Distributable tool
 – Implemented in mainstream languages: C/C++, Java, Python, etc., or as plug-ins to existing software (e.g., ImageJ, Chimera)
 • Prototyping in Mathematica is recommended
 – A graphical user interface (GUI) may be required
Guidelines

- Work individually
- Choose any language you prefer
 - OK to use existing packages/libraries, but need to demonstrate sufficient effort (i.e., algorithm design, coding) by yourself
Finding a problem

• Avoid problems that are too simple…
 – E.g., edge detection, image blurring, or anything that can be solved by a few Matlab/Mathematica/Python commands.

• … or too hard
 – E.g., automatic segmentation of X, a complete system for doing Y, etc.

• *If you find a problem by yourself, I expect to have at least one conversation with you before I accept your proposal.*
Finding a problem

• Pick a problem mentioned today
 – Tracking cornea ulcer
 – Measuring sperm cell length
 – Depth measurement on scapula
Finding a problem

• Where to look for your own topic:
 – Your friends who work on image-related research
 – Faculty in Med School, BME, Biology, Chemistry, etc.
 • Many faculty working on imaging can be found through Imaging Science Pathway: http://imagingpathways.wustl.edu/
 – Open problems of current interest
 • Check for research papers in imaging-related conferences (e.g. MICCAI) and journals (e.g., IEEE TMI)
 • Make sure you can find sufficient data to develop and test your tool.
Finding a problem

- Example problems in the past

DNA Gel Electrophoresis Analyzing Tool
(Gabriel Stancu)
Finding a problem

- Example problems in the past

Measuring small bowel length
(Billy Bennett)
Finding a problem

• Example problems in the past

Analyzing 3D cell shape in 2-photon microscopy
(Aron Lurie and Daniel Melzer)
Finding a problem

• Example problems in the past

Registering deforming heart surfaces
(Christopher Gloschat)
Project Proposal

- Due: Nov. 2 (next Wednesday) by email to instructor
- Contents
 - What is the problem
 - What are the required and wish-list features
 - Timeline of development (e.g., milestones)
Final Presentation

- Date: Dec 5 (Monday)
- A short in-class live demo of what you have accomplished
- 80% of course project grade
Project Hand-in

- **Due:** Dec 12 (Monday)
- **Contents**
 - Source code, executable tool (or plug-in), and test data
 - Project report
 - What required/wishlist features you have accomplished
 - Description of core algorithms, significant coding components, GUI development
 - A clearly-written Readme that describes how to use your tool
 - Any known bugs and future work
- **20% of course project grade**
Helpful Materials

• **ImageJ**: Open source image processing toolkit in Java
 - Takes care of basic I/O, display, and interaction.
 - Write your code as a plug-in

• **3D programming**
 - OpenGL: Industrial standard 3D library for C/C++
 - Great tutorial lessons: http://nehe.gamedev.net/lesson.asp?index=01

• **GUI programming in C++**