CSE546: Computational Geometry
Homework 4: Ham-Sandwich, Duality and line arrangement

Due: before class on Tuesday, Nov 21

Question 1: You are given two sets A and B of points in the plane, both of size n. Recall that a Ham-Sandwich cut is a line that bisects both point sets, such that there are at least $\lfloor n/2 \rfloor$ points of A and of B on each side of the cut. We define a connection between A and B as a set of n line segments, each connecting a point of A to some point of B (i.e., the segments define a one-to-one correspondence between A and B). The connection is disjoint if no two segments intersect.

Assuming you are given an algorithm for computing the Ham-Sandwich cut in $O(n \log n)$ time. Give an $O(n \log^2 n)$-time algorithm that outputs a disjoint connection between A and B.

Ham-Sandwich cut

A (disjoint) connection
Question 2: Given a set P of n points in the plane in general position, and given an angle θ, project the points orthogonally onto a directed line at angle θ. The resulting order of the projections is called an allowable permutation. (Let us assume that no two points project to the same point.)

1. Prove that there are $O(n^2)$ distinct allowable permutations.

2. You are given two sets of points B and R (called, blue and red, respectively), each of size n. Give an $O(n^2 \log n)$-time algorithm which determines whether there exists a direction θ, such that the orthogonal projections of the points of $B \cup R$ onto a line in this direction alternates between blue and red.

Question 3: Consider a collection of n points P in the plane. Define a 3-slab to be the region bounded by a pair of non-vertical parallel lines, such that there are at least 3 points in the region (including on the lines). Define the height of a 3-slab to be the vertical distance between its two lines (h in the picture below). Present an $O(n^2)$-time algorithm which computes a 3-slab of minimum height.