Dijkstra’s Alg & Prim’s MST Alg

Last time we saw Dijkstra’s Single-source Shortest Path algorithm.

Today

• Generalize Dijkstra’s alg (Greedy Tree Builder)
• Analyze time complexity of Greedy Tree Builder
• Prove correctness of Dijkstra’s Alg
• Present Prim’s Minimum Spanning Tree Alg
Dijkstra Single Source Shortest Path (Vertex S)

S.tracker = pq.addTracked(0, S) \textcolor{red}{\text{tag: semantics}}

For all \(v \in V - \{ S \} \)

\textcolor{green}{V.tracker = pq.addTracked(\infty, S)} \textcolor{green}{\text{length of shortest path from S Found so far}}

for all \(v \in V \)

\textcolor{green}{V.parent = null}

While (!pq.isEmpty())

\textcolor{red}{tag = pq.minTag()} \textcolor{red}{\text{remain vertices in pq are not reachable from S}}

if (tag == \infty) return

\textcolor{red}{u = pq.extractMin()}

\textcolor{red}{u.dist = tag}

for each edge from \(u \)

\textcolor{green}{v = e.dest}

if V.tracker.inCollection() \&\& \textcolor{green}{u.dist + e.weight < v's current tag}

\textcolor{red}{v.tracker.update(u.dist + e.weight)} \textcolor{red}{\text{new tag}}

\textcolor{green}{v.parent = e} \textcolor{green}{\text{found better path}}

\textcolor{green}{v's current tag is cost of this path}
Observe that

1. Each vertex in tagged priority queue has a tag which is cost of shortest path from S found so far.

$$\text{Shortest path: } S \rightarrow u \rightarrow v$$

- Length is u's tag.
- Path has cost u's tag + weight of e.
Minimum Spanning Tree Problem

Undirected weight graph
Find set T of edges where there is a path between any pair vertices where $\sum_{e \in T}$ weight of e is minimized

Observe: in opt sol T can always be a tree
Maximum Bottleneck Problem

specified start/source s, end t

bottleneck path (P) has min weight edge on P

Goal: Find path from s to t with maximum bottleneck

\begin{align*}
100 & \rightarrow 100 \\
100 & \rightarrow \\
3 & \rightarrow 3 \\
3 & \rightarrow 3 \\
3 & \rightarrow 3
\end{align*}
Greedy Tree Builder

- Change the semantics associated with the tag (for each vertex)
- Change tag given to source/seed
- Decide if min or max value tag is the best one to pick next
Shortest Path tag is weight of shortest path found so far from S. For S tag is 0. Pick vertex with min tag.

Minimum Spanning Tree tag is weight of smallest edge connecting vertex to partially built tree T. Seeds S as any vertex, tree begins there. For S tag is 0.

Update rule: \[
\min(v's \text{ tag}, \text{weight})
\]
Maximum Bottleneck problem

Semantics: tag of V is bottleneck of best path found so far from S to V

1. tag for S - D

2. min or max tag? - \max

3. $\max\left(V \cdot \text{tag}, \min\left(U \cdot \text{tag}, \text{weight of } e\right)\right)$

path of parent edge

$\min\left(U \cdot \text{tag}, \text{weight of } e\right)$

\max
Greedy Tree Builder

Initially s is placed in T. Then the following steps are repeated until all discovered vertices have been placed in T.

1. Select the vertex $u \in Q$ with the highest priority over all vertices in Q. (For each algorithm, a proof that this greedy choice is part of an optimal solution is required to prove that the final solution is optimal.)

2. Remove u from Q, which implicitly places u in T. Since the cost for each vertex $v \in Q$ represents its best connection to some vertex in T, the addition of u to T provides a new possible connection for each vertex $v \notin T$.

3. Consider all outgoing edges $e = (u, v)$ from u.

 (a) If $v \in U$, then v is placed into Q after setting the edge from its parent to e and initializing v_{cost} to the cost associated for parent edge e.

 (b) If $v \in Q$, the cost associated with v, for parent edge e, is computed. If this cost c is better than v’s current cost, then the cost for v is set to c and its parent edge is set to e.

S source/seed

T tree

Q queue holding discovered vertices

Continue until Q is empty
```java
void consider(E e, double parentCost, TaggedPriorityQueue<Double, V> pq) {
    double newCost = getCost(e, parentCost);
    if (newCost < loc.get().getTag()) {
        edgeFromParent = e;
        cost = newCost;
        pq.updateTag(cost, loc);
    }
}
```

Dijkstra's algorithm:

getCost(e, parentCost) = e.weight() + parentCost

Prim's algorithm:

getCost(e, parentCost) = e.weight()
void greedyTreeBuilder(tree, seedCost, comp)

Create a TaggedPriorityQueue<Double, V> pq that uses comp
add source/seed as root of tree with cost seedCost
source.loc = pq.putTracked(seedCost, source)

while (!pq.isEmpty())
 V u = pq.extractMax().getElement();

 for each outgoing edge e leaving u
 if (e.weight < 0) throw new NegativeWeightEdgeException
 V v = other endpoint of e (other than u)
 vData is an object holding data associated
 with v For this algorithm
 vData.loc in Collection()
 vData.consider(v, e, vData, getCost(e, u's cost))

 in Q if (vData.loc in Collection())
 vData.consider(v, e, vData, getCost(e, u's cost))

 uncovered
 v.add(v to tree with parent e + cost
 vData.loc = pq.putTracked(vData, cost, v)
Time Complexity

initialization $O(1) \text{ or } O(n)$

Each vertex

placed in Q at most once

$+ \text{ removed at most once}$

$\left\{ \begin{align*}
O(n(T_E(n) + T_Q(n))) \\
\text{time to insert in } Q \\
\text{time to extract max in } Q \\
\end{align*} \right.$

For each edge

all constant time except

update (increase Priority)

$\left\{ \begin{align*}
O(mT_U(n)) \\
\text{time to update} \\
\end{align*} \right.$