Dijkstra’s Shortest Path Algorithm

First let’s review breadth first search (BFS) that solves the single-source shortest path algorithm for an **unweighted** graph.
bfs(V source)

For each \(u \in V \)
- \(u\text{.discovered} = \text{False} \)
- \(u\text{.dist} = \infty \)
- \(u\text{.parent Edge} = \text{null} \)
- \(\text{Source}\text{.discovered} = \text{true} \)
- \(\text{Source}\text{.dist} = 0 \)
- \(\text{queue}\text{.enqueue}(\text{source}) \)

while (!\(\text{queue}\text{.isEmpty}() \))
- \(u = \text{queue}\text{.dequeue}() \)

for each edge \(e \) in outgoing edges from \(u \)
- \(v = e\text{.dest} \)
 - if (!\(v\text{.discovered} \))
 - \(v\text{.discovered} = \text{true} \)
 - \(v\text{.dist} = u\text{.dist} + 1 \)
 - \(v\text{.parent Edge} = e \)
 - \(\text{queue}\text{.enqueue}(v) \)
Upon completion of BFs

any vertices not discovered are not reachable from source

For all discovered vertices \(V \)
\(V.dist \) is \# of edges in a shortest path from source to \(V \)

Following parent references from \(V \)
to \(S \) gives a shortest path
from \(S \) to \(V \) (in reverse order)

Time complexity \(O(N+M) \) with adj list
Example from last class

Shortest path tree

X means it was discovered

Shortest path from a to h

e_{11}, e_3, e_5
How can we solve the single source shortest path algorithm in a weighted graph where all weights ≥ 0?

What goes wrong with BFS?

![Graph with weights]

Weight $3 + 4 + 2 = 9$
Use of queue in BFS was to process vertices in order of distance from source.

Reachable from 5:

\[5 \rightarrow \ldots \rightarrow 1 \rightarrow 2 \rightarrow 3 \rightarrow \ldots \]

Picked the reachable vertex in queue (not yet "placed in shortest path tree") with shortest distance from source.
Dijkstra Single Source Shortest Path (Vertex S)

1. \(S_\text{tracker} = \text{pq}.\text{addTracked}(0, S) \)
2. \(\text{tag: semantics} \)
3. \(\text{For all } v \in V - \{S\} \)
4. \(\text{length of shortest path from } S \)
5. \(\text{Found so far} \)
6. \(\text{V} _\text{tracker} = \text{pq}.\text{addTracked}(\infty, S) \)
7. \(\text{V} _\text{parent} = \text{null} \)
8. \(u \text{dist} \) \(\Rightarrow \) \(e \text{, weight} \)
9. \(\text{While (!pq.isEmpty())} \)
10. \(\text{tag} = \text{pq}_\text{minTag}() \)
11. \(\text{if (tag} = \infty) \text{return} \) // remain vertices in pq are not reachable from S
12. \(u = \text{pq}_\text{extractMin}() \)
13. \(u_\text{dist} = \text{tag} \)
14. \(\text{For each edge from } u \)
15. \(v = u_\text{dest} \)
16. \(\text{if (v}._\text{tracker} \in \text{Collection}() \&\& \)
17. \(u_\text{dist} + e_\text{weight} < v_\text{current tag} \)
18. \(v_\text{tracker}.\text{update}(u_\text{dist} + e_\text{weight}) \)
19. \(v_\text{parent} = e \)