
Acceleration of Ungapped Extension
in Mercury BLAST

Joseph Lancaster
Jeremy Buhler
Roger Chamberlain

Joseph Lancaster, Jeremy Buhler, and Roger Chamberlain, “Acceleration
of Ungapped Extension in Mercury BLAST,” in Proc. of the 7th Workshop
on Media and Streaming Processors, November 2005.

Washington University
Dept. of Computer Science and Engineering
Campus Box 1045
One Brookings Dr.
St. Louis, MO 63130

Acceleration of Ungapped Extension
in Mercury BLAST

Joseph Lancaster
Washington University

in St. Louis
One Brookings Drive
St. Louis, MO 63130

lancaster@wustl.edu

Jeremy Buhler
Washington University

in St. Louis
One Brookings Drive
St. Louis, MO 63130
jbuhler@wustl.edu

Roger D. Chamberlain
Washington University

in St. Louis
One Brookings Drive
St. Louis, MO 63130
roger@wustl.edu

ABSTRACT
The amount of biosequence data being produced each year is
growing exponentially. Extracting useful information from
this massive amount of data efficiently is becoming an in-
creasingly difficult task. There are many available soft-
ware tools that molecular biologists use for comparing ge-
nomic data. This paper focuses on accelerating the most
widely-used software tool, BLAST. Mercury BLAST takes a
streaming approach to the BLAST computation by offload-
ing the performance-critical sections to specialized hard-
ware. This hardware is then used in combination with the
processor of the host system to deliver BLAST results in a
fraction of the time of the general-purpose processor alone.

This paper is the first dissemination of the design of the
ungapped extension stage of Mercury BLAST. The archi-
tecture of the ungapped extension stage is described along
with the context of this stage within the Mercury BLAST
system. The design is compact and runs at 96 MHz on avail-
able FPGAs making it an effective and powerful component
for accelerating biosequence comparisons. The performance
of this stage is 25× that of the standard software distribu-
tion, yielding close to 50× performance improvement on the
complete BLAST application. The sensitivity is essentially
equivalent to that of the standard distribution.

Categories and Subject Descriptors
C.3 [Computer Systems Organization]: Special-purpose
and Application-based Systems

General Terms
Algorithms, Design, Performance

Keywords
BLAST, Biosequence analysis, Sequence alignment, FPGA
acceleration

MSP-7 Workshop at MICRO-38 Barcelona, Spain, 2005

1. INTRODUCTION
Databases of genomic DNA and protein sequences are an
essential resource for modern molecular biology. Compu-
tational search of these databases can show that a DNA
sequence acquired in the lab is similar to other sequences of
known biological function, revealing both its role in the cell
and its history over evolutionary time. A decade of improve-
ment in DNA sequencing technology has driven exponential
growth of biosequence databases such as NCBI GenBank [7],
which has doubled in size every 12–16 months for the last
decade and now stands at over 45 billion characters. Tech-
nological gains have also generated more novel sequences,
including entire mammalian genomes [6, 11], to keep search
engines busy.

The most widely used software for efficiently comparing bio-
sequences to a database is BLAST, the Basic Local Align-
ment Search Tool [1, 2, 3]. BLAST compares a query se-
quence to a biosequence database to find other sequences
that differ from it by a small number of edits (single-character
insertions, deletions, or substitutions). Because direct mea-
surement of edit distance between sequences is computation-
ally expensive, BLAST uses a variety of heuristics to identify
small portions of a large database that are worth comparing
carefully to the query.

BLAST is a pipeline of computations that filter a stream of
characters (the database) to identify meaningful matches to
a query. To keep pace with growing databases and queries,
this stream must be filtered at increasingly higher rates.
One path to higher performance is to develop a specialized
processor that offloads part of BLAST’s computation from
a general-purpose CPU. Past examples of processors that
accelerate or replace BLAST include the ASIC-based Para-
cel GeneMatcherTM [8] and the FPGA-based TimeLogic
DecypherBLASTTM engine [10]. Recently, we have devel-
oped a new accelerator design, the FPGA-based Mercury
BLAST engine [5]. Mercury BLAST exploits fine-grained
parallelism in BLAST’s algorithms and the high I/O band-
width of current commodity computing systems to deliver
1–2 orders of magnitude speedup over software BLAST on
a card suitable for deployment in a laboratory desktop.

Mercury BLAST is a multistage pipeline, parts of which
are implemented in FPGA hardware. This work describes
a key part of the pipeline, ungapped extension, that sifts

w−mers ungapped
matching

word
extension extension

gappedHSPs

stage 1 stage 2 stage 3

sequences
database final

alignments

Figure 1: NCBI BLAST pipeline.

0

200

400

600

800

1000

1200

1400

1600

0 20 40 60 80 100

Stage 2 throughput (Mmatches/s)

S
y

s
te

m
th

ro
u

g
h

p
u

t
(M

b
a

s
e

s
/s

)

25,000 bases 20,000 bases

Figure 2: Throughput of overall pipeline as a func-
tion of ungapped extension throughput for queries
of sizes 20 kbases and 25 kbases.

through pattern matches between query and database and
decides whether to perform a more accurate but computa-
tionally expensive comparison between them. Our design il-
lustrates a fruitful approach to accelerating variable-length
string matching that is robust to character substitutions.
The implementation is compact, runs at high clock rates,
and can process one pattern match every clock cycle.

The rest of the paper is organized as follows. Section 2 gives
a fuller account of the BLAST computation and illustrates
the need to accelerate ungapped extension. Section 3 de-
scribes our accelerator design and details its hardware archi-
tecture. Section 4 evaluates the sensitivity and throughput
of our implementation, and Section 5 concludes.

2. BACKGROUND: THE BLAST COMPU-
TATION

BLAST’s search computation is organized as a three-stage
pipeline, illustrated in Figure 1. The pipeline is initialized
with a query sequence, after which a database is streamed
through it to identify matches to that query. We focus on
BLASTN, the form of BLAST used to compare DNA se-
quences; however, many of the details described here also
apply to BLASTP, the form used for protein sequences.

The first pipeline stage, word matching, detects substrings
of fixed length w in the stream that perfectly match a sub-
string of the query; typically, w = 11 for DNA. We refer
to these short matches as w-mers. Each matching w-mer
is forwarded to the second stage, ungapped extension, which
extends the w-mer to either side to identify a longer pair

0

10

20

30

40

50

60

0 20 40 60 80 100

Stage 2 throughput (Mmatches/s)

O
v

e
ra

ll
s

p
e

e
d

u
p

25,000 bases 20,000 bases

Figure 3: Speedup of overall pipeline as a function of
ungapped extension throughput for queries of sizes
20 kbases and 25 kbases.

of sequences around it that match with at most a small
number of mismatched characters. These longer matches
are high-scoring segment pairs (HSPs), or ungapped align-
ments. Finally, every HSP that has both enough matches
and sufficiently few mismatches is passed to the third stage,
gapped extension, which uses the Smith-Waterman dynamic
programming algorithm [9] to extend it into a gapped align-
ment, a pair of similar regions that may differ by arbitrary
edits. BLAST reports only gapped alignments with many
matches and few edits.

To quantify the computational cost of each stage of BLASTN,
we profiled the standard BLASTN software published by the
National Center for Biological Information (NCBI), v2.3.2,
on a comparison of 30 randomly selected 25,000-base queries
from the human genome to a database containing the non-
repetitive fraction of the mouse genome (1.16 × 109 char-
acters). NCBI BLAST was profiled on a 2.8 GHz Intel P4
workstation running Linux. The search spent 83.9% of time
in word matching, 15.9% in ungapped extension, and the
remaining time in gapped extension. While execution time
varied with query length (roughly linearly), the per stage
percent execution times are relatively invariant with query
length.

Our profile illustrates that, to achieve more than about a 6×
speedup of NCBI BLASTN on large genome comparisons,
one must accelerate both word matching and ungapped ex-
tension. Mercury BLASTN therefore accelerates both these
stages, leaving stage 3 to NCBI’s software. Our previous
work [5] described how we accelerate word matching. This
work represents the first description of Mercury BLAST’s

approach to ungapped extension.

With stage 1 (word matching) accelerated as described in [5],
the performance of stage 2 (ungapped extension) directly
determines the performance of the overall pipelined applica-
tion. Figure 2 shows the application throughput (quantified
by the ingest rate of the complete pipeline, in million bases
per second) as a function of the performance attainable in
stage 2 (quantified by the ingest rate of stage 2 alone, in
million matches per second). The figure includes results for
both 25,000-base queries and 20,000-base queries. Figure 3
plots the resulting speedup (for both query sizes) over NCBI
BLAST executing on the reference system described above.

The software profiling shows, for 25,000-base queries, an av-
erage execution time for stage 2 alone of 0.265 µs/match.
This corresponds to a throughput of 3.8 Mmatches/s, plot-
ted towards the left of Figures 2 and 3. As we increase
the performance of stage 2, the overall pipeline performance
increases proportionately until stage 2 is no longer the bot-
tleneck stage. Precisely how we do this is the subject of this
paper.

Profiling of typical BLASTP computations reveals that un-
gapped extension accounts for an even larger fraction of the
overall computational cost. The design described here for
BLASTN ports with minimal changes to become an efficient
stage 2 for BLASTP as well.

3. DESIGN DESCRIPTION
The purpose of extending a w-mer is to determine, as quickly
and accurately as possible, whether the w-mer arose by
chance alone, or whether it may indicate a significant match.
Ungapped extension must decide whether each w-mer emit-
ted from word matching is worth inspecting by the more
computationally intensive gapped extension. It is important
to distinguish between spurious w-mers as early as possible
in the BLAST pipeline because later stages are increasingly
more complex. There exists a delicate balance between the
stringency of the filter and its sensitivity, i.e. the number of
biologically significant alignments that are found. A highly
stringent filter is needed to minimize time spent in fruitless
gapped extension, but the filter must not throw out w-mers
that legitimately identify long query-database matches with
few differences. For FPGA implementation, this filtering
computation must also be parallelizable and simple enough
to fit in a limited area.

Mercury BLASTN implements stage 2 guided in part by
lessons learned from the implementation of stage 1 described
in [5]. It deploys an FPGA ungapped extension stage that
acts as a prefilter in front of NCBI BLASTN’s software un-
gapped extension. This design exploits the speed of FPGA
implementation to greatly reduce the number of w-mers
passed to software while retaining the flexibility of the soft-
ware implementation on those w-mers that pass. A w-mer
must pass both hardware and software ungapped extension
before being released to gapped extension. Here, we are ex-
ploiting the streaming nature of the application as a whole.
Since the performance focus is on overall throughput, not
latency, adding an additional processing stage which is de-
ployed on dedicated hardware is often a useful technique.
In the next sections, we briefly describe NCBI BLASTN’s

software ungapped extension stage, then describe Mercury
BLASTN’s hardware stage. Figure 4 shows an example il-
lustrating the two different approaches to ungapped exten-
sion.

3.1 NCBI BLAST Ungapped Extension
NCBI BLASTN’s ungapped extension of a w-mer into an
HSP runs in two steps. The w-mer is extended back toward
the beginnings of the two sequences, then forward toward
their ends. As the HSP extends over each character pair,
that pair receives a reward +α if the characters match or a
penalty −β if they mismatch. An HSP’s score is the sum of
these rewards and penalties over all its pairs. The end of the
HSP in each direction is chosen to maximize the total score
of that direction’s extension. If the final HSP scores above a
user-defined threshold, it is passed on to gapped extension.

For long sequences, it is useful to terminate extension before
reaching the ends of the sequences, especially if no high-
scoring HSP is likely to be found. BLASTN implements
early termination by an X-drop mechanism. The algorithm
tracks the highest score achieved by any extension of the
w-mer thus far; if the current extension scores at least X
below this maximum, further extension in that direction is
terminated.

Ungapped extension with X-dropping allows BLASTN to
recover HSPs of arbitrary length while limiting the aver-
age search space for a given w-mer. However, because the
regions of extension can in principle be quite long, this
heuristic is not as suitable for fast implementation in an
FPGA. Note that even though extension in both directions
can be done in parallel, this was not sufficient to achieve the
speedups we desired.

3.2 Mercury BLASTN’s Approach
Mercury BLASTN takes a different, more FPGA-friendly
approach to ungapped extension. Extension for a given w-
mer is performed in a single forward pass over a fixed-size
window. These features of our approach simplify hardware
implementation and expose opportunities to exploit fine-
grain parallelism and pipelining that are not easily accessed
in NCBI BLASTN’s algorithm. Our extension algorithm is
given as pseudocode in Figure 5.

Extension begins by calculating the limits of a fixed window
of length Lw, centered on the w-mer, in both query and
database stream. The appropriate substrings of the query
and the stream are fetched into buffers. Once these sub-
strings are buffered, the extension algorithm begins.

Extension implements a dynamic programming recurrence
that simultaneously computes the start and end of the best
HSP in the window. First, the score contribution of each
character pair in the window is computed, using the same
bonus +α and penalty −β as the software implementation.
These contributions can be calculated independently in par-
allel for each pair. Then, for each position i of the window,
the recurrence computes the score γi of the best (highest-
scoring) HSP that terminates at i, along with the position
Bi at which this HSP begins. These values can be updated
for each i in constant time. The algorithm also tracks Γi,
the score of the best HSP ending at or before i, along with

−3−3 −3−3−3 −3 −3−3−3−3

−3 −33−

−1

3− −3

AGAC

5−mer

T

maximal scoring substring
(score = 7)

Query
C A G T G A A C G A T G T G A A C G C A T T T C A C A C A ATA T GT

24 1 0
1 1 1 1

1 4 3 6 5 4 3 2 1
1111111

1
1

2− 1−
1

0
1

1
1

2
1Comparison Score

Running Score 1− 4 7 10−−−

NCBI BLAST

AGAC T

5−mer

maximal scoring substring

Query
C A G T G A T A C G A T G T G A A C A T G C A T T T C A C A G C A T A

1 1 1 1 1 1 1 1 1 1 1 1 1Comparison Score

Mercury BLAST

(score = 7)

A T C C T G A T C G A T C G G T A CAGAT C T T G C A A A G T C A A G T G T C

C C T G A T C G A T C G G T A CAGA T C T T G C A A A G T C A A G T G T C

1

− −1−2

A T

Subject

Subject

X−drop = 10

Figure 4: Examples of NCBI and Mercury ungapped extension. The parameters used here are Lw = 19,
w = 5, α = 1, β = −3, and X-drop= 10. NCBI BLAST ungapped extension begins at the end of the w-mer and
extends left. The extension stops when the running score drops 10 below the maximum score (as indicated
by the arrows). The same computation is then performed in the other direction. The final substring is
the concatenation of the best substrings from the left and right extensions. Mercury BLAST ungapped
extension begins at the leftmost base of the window (indicated by brackets) and moves right, calculating the
best-scoring substring in the window. In this example, the algorithms gave the same result, but this is not
necessarily the case in general.

its endpoints Bmax and Emax. Note that ΓLw is the score of
the best HSP in the entire window. If ΓLw is greater than a
user-defined score threshold, the w-mer passes the prefilter
and is forwarded to software ungapped extension.

Two subtleties of Mercury BLASTN’s algorithm should be
explained. First, our recurrence requires that the HSP found
by the algorithm pass through its original matching w-mer;
a higher-scoring HSP in the window that does not contain
this w-mer is ignored. This constraint ensures that, if two
distinct biological features appear in a single window, the
w-mers generated from each have a chance to generate two
independent HSPs. Otherwise, both w-mers might identify
only the feature with the higher-scoring HSP, causing the
other feature to be ignored. Second, if the best HSP inter-
sects the bounds of the window, it is passed on to software
regardless of its score. This heuristic ensures that HSPs
that might extend well beyond the window boundaries are
properly found by software, which has no fixed-size window
limits, rather than being prematurely eliminated.

3.3 Implementation
As the name implies, Mercury BLAST has been targeted to
the Mercury system [4]. The Mercury system is a prototyp-
ing infrastructure designed to accelerate disk-based compu-
tations. This system exploits the high I/O bandwidth avail-
able from modern disks by streaming data directly from the
disk medium to the FPGA. Figure 6 shows the organization
of the application pipeline for BLASTN. The input comes

1 Extension (w−mer)
2 Ca l cu la te window boundar ies
3 Γ = γ = 0
4 B = Bmax = Emax = 0
5
6 f o r i = 1...Lw

7 i f qi = si

8 γ = γ + α
9 e l s e

10 γ = γ − β
11
12 i f γ > 0
13 i f γ > Γ and i > WmerEnd
14 Γ = γ
15 Bmax = B
16 Emax = i
17 e l s e i f i < WmerStart
18 B = B + 1
19 γ = 0
20
21 i f Γ > T or Bmax = 0 or Emax = Lw

22 re turn True
23 e l s e
24 re turn Fa l se

Figure 5: Mercury BLAST Extension algorithm
pseudocode.

matching
word

prefilter prefilter
extensionmatching

word
extension extension

stage 1a stage 1b stage 2a stage 2b stage 3

Processor

SRAM

FPGA

ungapped gappeddatabase alignmentsungapped

Figure 6: Overview of Mercury BLASTN hardware/software deployment.

from the disk, is delivered to the hardware word matching
module (which also employs a prefilter), and then passes
into the ungapped extension prefilter. The output of the
prefilter goes to the processor for the remainder of stage 2
(ungapped extension) and stage 3 (gapped extension). The
prefilter algorithm lends itself to hardware implementation
despite the sequential expression of the computation in Fig-
ure 5.

The ungapped extension prefilter design is fully pipelined
internally and accepts one match per clock. The prefilter
is parameterizable with the parameters chosen based on a
number of design-specific constraints. Commands are sup-
ported to configure parameters such as match score, mis-
match score, and cutoff thresholds. Thus, the trade-off be-
tween sensitivity and throughput is left to the discretion of
the user. Since the w-mer matching stage generates more
output than input, two independent data paths are used for
input into stage 2. The w-mers and commands are sent on
one path, and the database is sent on the other. The module
is organized as 3 pipelined stages as illustrated in Figure 7.

The controller parses the input to demultiplex the shared
command and data stream. All w-mer matches and the
database flow through the controller into the window lookup
module. This module is responsible for fetching the appro-
priate substrings of the database stream and the query to
form the alignment window. The query is buffered on-chip
using the dual-ported BRAM on the FPGA. The database
stream is buffered in a circular buffer which is also created
from BRAMs. This buffer retains only the portion of the
stream needed to form the windows for the input w-mers. As
mentioned earlier, the w-mer generation is done in the first
hardware stage. Only a small amount of the database stream
needs to be buffered to accommodate all input w-mers be-
cause they arrive from stage 1 in-order with respect to the
database stream. Since the BRAMs are a highly-utilized
resource in stage 1, the BRAMs are time-multiplexed to
create a quadported BRAM structure. This allows stage 2
to use half the number of BRAMs for buffering that would
otherwise be necessary. After the window is fetched, it is
passed into the scoring module and stored in registers. The
scoring module implements the recurrence of the extension
algorithm. Since the computation is too complex to be done
in a single cycle, the scorer is extensively pipelined.

Figure 8 illustrates the first stage of the scoring pipeline.
This stage, the base comparator, assigns a comparison score

to each base pair in the window. For BLASTN, the base
comparator assigns a reward α to each matching base pair
and a penalty −β to each mismatching pair. The score com-
putation is the same for BLASTP, except there are many
more choices for the score. In BLASTP, the α and −β are
replaced with a value retrieved from a lookup table that is
indexed by the concatenation of the two bases. The calcula-
tion of all comparison scores is done in a single cycle, using
Lw comparators. After the scores are calculated, they are
stored for use in later stages of the pipeline.

The scoring module is arranged as a classic systolic array.
The data from the previous stage are read on each clock,
and results are output to the following stage on the next
clock. As Figure 7 shows, storage for comparison scores in
successive pipeline stages decreases in every stage. This de-
crease is possible because the comparison score for window
position i is consumed in the ith pipeline stage and may
then be discarded, since later stages inspect only window
positions > i. This structure of data movement is shown
in more detail in Figure 9. The darkened registers hold the
necessary comparison scores for the w-mer being processed
in each pipeline stage. Note that for ease of discussion, Fig-
ure 9 shows a single comparison score being dropped for each
scorer stage; however, the actual implementation consumes
two comparison scores per stage.

Figure 10 shows the interface of an individual scoring stage.
The values shown entering the top of the scoring stage are
the state of dynamic programming recurrence propagated
from the previous scoring stage. These values are read as
input to combinational logic and the results are stored in
the output registers shown on the right. Each scoring stage
in the pipeline contains combinational logic to implement
the dynamic programming recurrence shown in lines 12-19
of the algorithm described in Figure 5. The data entering
from the left of the module are the comparison scores and
the database and query positions for a given w-mer, which
are independent of the state of the recurrence. In order to
sustain a high clock frequency design, each scoring stage
computes only two iterations of the loop per clock cycle,
resulting in Lw/2 scoring stages for a complete calculation.
Hence, there are Lw/2 independent w-mers being processed
simultaneously in the scoring stages of the processor when
the pipe is full.

The final pipeline stage of the scoring module is the thresh-
old comparator. The comparator takes the fully-scored seg-

Comparator Comparator
ThresholdBase

. . .

Scoring Stages

w−mers /
commands

Scoring Module

Module
Lookup
WindowExtension

Controller
database

Figure 7: Ungapped extension prefilter design.

G A A G T C C

A C A T G T A

CMPCMP . . .

to scoring
stages

α

−β

Figure 8: Illustration of the base comparator for BLASTN. The base comparator stage computes the scores
of every base pair in the window in parallel. These scores are stored in registers which are fed as input to
the systolic array of scorer stages.

Ba
se

 C
om

pa
ra

to
r

comparator

In
iti

al
iz

at
io

n

Pipeline
Scoring

Pipeline
Scoring

Pipeline
Scoring

Pipeline
Scoring

Stage

Stage

Stage

Stage

to threshold

Figure 9: Depiction of the systolic array of scoring stages. The dark registers hold data which is independent
of the state of the recurrence. The data flow left to right on each clock cycle. The light registers are the
pipeline calculation registers used to transfer the state of the recurrence from a previous scoring stage to the
next. Each column of registers contains an different w-mer in the pipeline.

B

Γ

Bmax

Emax

Pipeline Calculation
Registers Out

Pipeline Scoring

Stage i

γ

Emax

Bmax

Γ

γ

Offset
DB

Offset
Query

Registers In

B

α / β

fro
m

 s
co

rin
g

st
ag

e
i−

1

to
 s

co
rin

g
st

ag
e

i+
1

Pipeline Calculation

Figure 10: Detailed view of an individual scoring stage.

ment and makes a decision to discard or keep the w-mer.
This decision is based on the score of the alignment relative
to a user-defined threshold T , as well as the position of the
highest-scoring substring. If the maximum score is above
the threshold, the w-mer is passed on. Additionally, if the
maximal scoring substring intersects either boundary of the
window, the w-mer is also passed on, regardless of the score.
If neither condition holds, the w-mer is discarded.

In the current implementation, the ungapped extension pre-
filter stage utilizes approximately 38% of the logic cells and
27 BRAMs on a Xilinx Virtex-II 6000 series FPGA, includ-
ing the infrastructure for moving data in and out of the
FPGA itself. The design runs at 96 MHz, processing one
w-mer per clock. The full Mercury BLASTN design utilizes
approximately 65% of the logic cells and 134 BRAMs.

4. RESULTS
There are many aspects to the performance of an ungapped
extension filter. First is the individual stage throughput.
The ungapped extension stage must run fast enough to not
be a bottleneck in the overall pipeline. Second, the un-
gapped extension stage must effectively filter as many w-
mers as possible, since downstream stages are even more
computationally expensive. Finally, the above must be achieved
without inadvertently dropping a large percentage of the
significant alignments (i.e., the false negative rate must be
limited). We will describe throughput performance first
for the ungapped extension stage alone, then for the en-
tire BLASTN application. After describing throughput, we
discuss the sensitivity of the pipeline to significant sequence
alignments.

The throughput of Mercury BLASTN ungapped extension
is a function of the data input rate. The ungapped exten-

Table 1: BLASTN sensitivity results using the hard-
ware prefilter. For all experiments, the window size
is 64 characters.

Score Threshold Reject Fraction Percent Found

20 0.999902 99.72

18 0.999506 99.92

17 0.997221 99.95

16 0.995735 99.96

sion stage accepts one w-mer per clock and runs at 96 MHz.
Hence the maximum throughput of the filter is 1 input
match/cycle × 96 MHz = 96 Mmatches/second. This gives
a speedup of 25× over the software ungapped extension ex-
ecuted on the baseline system described earlier.

To explore the impact this stage 2 performance has on the
overall system, we return to the graphs of Figures 2 and 3.
Above approximately 35 Mmatches/s, the overall system
throughput is at its maximum rate of 1400 Mbases/s, with
a speedup of 48× over that of software NCBI BLASTN for
a 25,000-base query and a speedup of 38× over software for
a 20,000-base query.

Two parameters of ungapped extension affect its sensitivity.
First, the score threshold used affects the number of HSPs
that are produced. Second, the length of the window can af-
fect the number of false negatives that are produced. HSPs
which have enough mismatches before the window boundary
to be below the score threshold but have many matches im-
mediately outside the boundary will be incorrectly rejected.

To evaluate the functional sensitivity of hardware ungapped

extension, measurements were performed using an instru-
mented version of NCBI BLASTN. A software emulator of
the new ungapped extension algorithm was placed in front
of the standard NCBI ungapped extension stage. Statis-
tics were gathered which show how many w-mers arrived
at the ungapped extension stage, and how many passed.
These statistics were collected both for NCBI BLASTN un-
gapped extension alone and with the hardware emulator
in place. The dataset was generated from the human and
mouse genomes. The queries were statistically significant
samples of various sizes (e.g., 10 kbase, 100 kbase, and
1 Mbase). The database stream was the mouse genome with
low-complexity and repetitive sequences removed.

Table 1 summarizes the results for a window size of 64 bases,
which is the window size used in the current hardware im-
plementation. A score threshold of 20 corresponds to the
default value in NCBI BLASTN ungapped extension. The
reject fraction is the measured ratio of output HSPs over
input w-mers. This value quantifies the effectiveness of the
overall stage 2 at filtering w-mers so they need not be pro-
cessed in stage 3. The percent found is the percentage of
gapped alignments present in the output of NCBI BLASTN
that are also present in the output of Mercury BLASTN.
Using a window length of 64 bases, the ungapped extension
prefilter is able to filter out between 99.5% and 99.99% of
all its input. For instance, a threshold of 17 gives a good
tradeoff between a high reject fraction while keeping the
vast majority (99.95%) of the significant HSPs. This trans-
lates into 5 missed HSPs out of 10334 HSPs found by NCBI
BLAST.

5. CONCLUSION
Biosequence similarity search can be accelerated practically
by a pipeline designed to filter high-speed streams of char-
acter data. We have described a portion of our Mercury
BLASTN search accelerator, focusing on our design for its
performance-critical ungapped extension stage. Our highly
parallel and pipelined implementation yields results compa-
rable to those obtained from software BLASTN while run-
ning 25× faster and enabling the entire accelerator to run
approximately 40× to 50× faster. Currently a functionally
complete implementation has been deployed on the Mercury
system and is undergoing performance tuning.

Our ungapped extension design is suitable not only for the
DNA-focused BLASTN but also for other forms of BLAST,
particularly the BLASTP algorithm used on proteins, for
other applications of ungapped sequence alignment. Porting
the current implementation to BLASTP requires support
for more bits per character (5, vs. 2 for DNA) and a richer
scoring function for individual character pairs; however, it
should require essentially no further changes. We antici-
pate using this stage in our in-progress design for Mercury
BLASTP and expect that it will prove similarly successful
in that application.

Acknowledgement
This research is supported by NIH/NGHRI grant 1 R42
HG003225-01 and NSF Career grant DBI-0237902.

6. REFERENCES
[1] S. F. Altschul and W. Gish. Local alignment statistics.

Methods: a Companion to Methods in Enzymology,
266:460–80, 1996.

[2] S. F. Altschul, W. Gish, W. Miller, E. W. Myers,
et al. Basic local alignment search tool. Journal of
Molecular Biology, 215:403–10, 1990.

[3] S. F. Altschul, T. L. Madden, A. A. Schäffer,
J. Zhang, Z. Zhang, W. Miller, and D. J. Lipman.
Gapped BLAST and PSI-BLAST: a new generation of
protein database search programs. Nucleic Acids
Research, 25:3389–402, 1997.

[4] R. D. Chamberlain, R. K. Cytron, M. A. Franklin,
and R. S. Indeck. The Mercury system: Exploiting
truly fast hardware for data search. In Proc. of Int’l
Workshop on Storage Network Architecture and
Parallel I/Os, pages 65–72, Sept. 2003.

[5] P. Krishnamurthy, J. Buhler, R. D. Chamberlain,
M. A. Franklin, K. Gyang, and J. Lancaster.
Biosequence similarity search on the Mercury system.
In Proceedings of the 15th IEEE International
Conference on Application-Specific Systems,
Architectures, and Processors (ASAP04), pages
365–75, 2004.

[6] E. S. Lander et al. Initial sequencing and analysis of
the human genome. Nature, 409:860–921, 2001.

[7] National Center for Biological Information. Growth of
GenBank, 2002. http://www.ncbi.nlm.nih.gov/
Genbank/genbankstats.html.

[8] Paracel, Inc. http://www.paracel.com.

[9] T. F. Smith and M. S. Waterman. Identification of
common molecular subsequences. Journal of Molecular
Biology, 147(1):195–97, Mar. 1981.

[10] TimeLogic Corporation. http://www.timelogic.com.

[11] R. H. Waterston et al. Initial sequencing and
comparative analysis of the mouse genome. Nature,
420:520–562, 2002.

