
Optimal Runtime Reconfiguration Strategies for
Systolic Arrays

Arpith C. Jacob
Jeremy D. Buhler

Roger D. Chamberlain

Arpith C. Jacob, Jeremy D. Buhler, and Roger D. Chamberlain, “Optimal
Runtime Reconfiguration Strategies for Systolic Arrays,” in Proc. of 19th
Int’l Conf. on Field Programmable Logic and Applications (FPL), August
2009, pp.162-167.

Dept. of Computer Science and Engineering
Washington University in St. Louis

and

BECS Technology, Inc.

OPTIMAL RUNTIME RECONFIGURATION STRATEGIES FOR SYSTOLIC ARRAYS

Arpith C. Jacob∗, Jeremy D. Buhler∗, Roger D. Chamberlain∗†

∗Department of Computer Science and Engineering

Washington University in St. Louis

†BECS Technology, Inc.

St. Louis, Missouri

Email: {jarpith,jbuhler,roger}@cse.wustl.edu

ABSTRACT

Many computation kernels that analyze large data streams

can be accelerated by converting their recurrences to parallel

systolic arrays. Application domains such as bioinformatics

seek to minimize the total time to analyze a large set of dis-

crete small inputs. While traditional methods for array syn-

thesis produce a single most efficient array design, modern

computational platforms support fast runtime reconfigura-

tion that can choose among a collection of arrays optimized

for different input characteristics, such as input size.

In this work, we give dynamic programming algorithms

to efficiently select a few array implementations from a large

set of candidates so as to minimize total execution time on

a dataset with a known distribution of input sizes. We apply

our methods to accelerate the Nussinov RNA folding algo-

rithm on a Xilinx Virtex 4 FPGA. Using runtime reconfigu-

ration among five array instantiations, we are able to process

a database of 2.7 billion RNA bases in 72 seconds, which

is 48% faster than using a single array and 252× faster than

comparable software. We demonstrate substantial efficiency

benefits even when the input length distribution is biased to-

ward low-throughput arrays, when reconfiguration time is

as large as half a second, and when only a small number of

distinct arrays may be used.

1. INTRODUCTION

Numerous computational tasks on sequential or time-series

data can be described by a system of recurrence equations.

To accelerate the computation of such recurrences, one can

derive a fine-grained parallel systolic array using the for-

mal tools of space-time analysis [1]. Systolic array designs

can be implemented efficiently by a variety of hardware plat-

forms; they are commonly targeted to VLSI devices or field-

programmable gate arrays (FPGAs).

The authors thank Berkley Shands for extensive support in the use of

the Exegy infrastructure. This work was supported by NIH award R42

HG003225 and NSF awards DBI-0237902 and ITR-427794. R.D. Cham-

berlain is a principal in BECS Technology, Inc.

Classic systolic array design [2] seeks an array that firstly

minimizes the latency of computation, i.e. the time to com-

pletely process one input, and secondly uses the fewest pos-

sible processing elements to achieve this optimal latency.

Such a design also minimizes total computation time when

the input is a continuous stream of data, as in many signal-

processing applications.

However, one may instead seek to process a large collec-

tion of discrete inputs. In such a case, array design can ex-

plicitly minimize total execution time by maximizing com-

putational throughput [3], processing inputs in a pipelined

fashion. Streams of discrete inputs arise naturally in the

domain of bioinformatics, where the input may consist of

many short sequences such as high-throughput sequencing

reads or of probabilistic sequence models such as hidden

Markov models. This work seeks to deal efficiently with

such streams of discrete inputs.

Once an array design has been chosen, it must be instan-

tiated on the target device with a fixed array size and hence

a fixed input size. If all inputs to the array are the same

size, there is a naturally most efficient array size; otherwise,

for any fixed array size, smaller inputs must be padded out

to the array’s input size, while larger ones (if supported at

all) must be split and processed in multiple passes. Existing

work has focused largely on selecting a single array design

that yields good performance over a range of input sizes [2].

This approach is natural for VLSI synthesis, in which the

design cannot change to respond to variations in input size.

Other target platforms such as FPGAs, however, have

the flexibility to handle a range of input sizes without sacri-

ficing efficiency. Because these platforms can be reconfig-

ured quickly (less than a second) with a new array design,

one can efficiently alter the array to accommodate runs of

larger and smaller inputs. For smaller inputs, a smaller array

instantiation eliminates the need for input padding and the

associated useless computation. Moreover, because higher-

throughput arrays often require substantially more computa-

tional resources, it may be possible to exploit pipelining at

smaller sizes while reverting to more resource-efficient but

978-1-4244-3892-1/09/$25.00 ©2009 IEEE 162

slower arrays at larger sizes.

In this work, we present an algorithmic framework for

deciding which of a large set of possible systolic array de-

signs to use so as to minimize total computation time on a

known distribution of input sizes. Our algorithms select a set

of designs (either bounded or unbounded) and indicate when

to switch among them, assuming that the inputs are sorted

monotonically by size. We demonstrate the utility of our

approach for the bioinformatics domain by accelerating an

FPGA implementation of the Nussinov algorithm for RNA

folding [4]. We briefly describe three families of arrays for

this problem from our prior work, then apply our algorithm

to select arrays from these families for both real and syn-

thetic size distributions and estimate the resulting speedups.

Finally, we demonstrate a realization of runtime array re-

configuration on a Xilinx Virtex-4 LX100-12 FPGA device

and measure the performance impact of reconfiguration on

a database containing tens of millions of short sequences to

be folded. Our runtime implementation is 48% faster than

the best single array for our dataset and 252× faster than

a baseline software implementation. We demonstrate that

our runtime reconfiguration scheme confers substantial ef-

ficiency benefits even when the input length distribution is

biased toward low-throughput arrays, when reconfiguration

time is as large as half a second, and when only a small

number of distinct arrays may be used.

2. SELECTING AN OPTIMAL SET OF ARRAYS

Suppose we are given a large collection of input items with

lengths in the range 1 . . .M . We assume that the collec-

tion has been analyzed offline to determine the number C(i)
of inputs of each size i, and that it has been sorted in non-

decreasing order of input size. These assumptions are rea-

sonable in, for example, bioinformatics data sets, which are

typically generated and formatted offline and then stored in

a database for analysis. In the case of an online search, se-

quences may be binned by size and buffered upon receipt

from clients.

Let A be a set of candidate systolic array designs. Each

design a ∈ A is actually a family of instantiations a(i)
parametrized by input size i. The largest feasible input size

S(a) for a is determined by the resource limits of the tar-

get device. Array a(i) has a block pipelining period βa(i),

which is the required delay in cycles between successive in-

puts; the reciprocal of β is the array’s throughput.

Let E(i) be the minimum time required to process all

inputs of size 1 to i inclusive, using some combination of

designs from A. Our goal is to compute E(M). A dynamic

programming recurrence for E(i) is given by

E(i) = min
1≤a≤|A|

min
1≤j<i

˘

E(j − 1) + ρ + δa(j, i)
¯

δa(j, i) =

8

>

>

<

>

>

:

La(i) +
X

j≤k≤i

C(k) × βa(i) if i ≤ S(a)

∞ otherwise

9

>

>

=

>

>

;

(1)

where ρ is the reconfiguration time needed to load a new ar-

ray on the target device, and δa(j, i) is the time to execute

all inputs of length j . . . i on array a(i). δa(j, i) is computed

as the sum of the pipelining periods of the inputs and the la-

tency of execution, La(i), of the last input on the array. This

latency, however, is negligible compared to the rest of the

sum and the reconfiguration time, so we ignore it hereafter.

All times are expressed in cycles but could be converted to

seconds to combine designs with different clock speeds.

To compute the optimal execution time for inputs of length

1 . . . i, the recurrence considers all possible reconfiguration

locations 1 ≤ j < i. Sequences of length j . . . i are ex-

ecuted on array a(i). This is followed by reconfiguration

and the optimal execution of the remaining inputs. We must

consider all possible locations for reconfiguration and every

candidate family of arrays in A. Correctness follows from

the optimal substructure of the optimization problem.

The initialization condition is E(0) = −ρ, and the opti-

mal execution time E(M) over all inputs can be computed

bottom-up in i. We can retrieve the optimal sequence of ar-

ray instantiations using a standard traceback procedure.

The full algorithm solves M subproblems, each requir-

ing maximization over O(M |A|) cases. One may precom-

pute and store all required δ values in time O(M2|A|), mak-

ing each case constant-time and yielding total computation

time of O(M2|A|). This running time is practical provided

that the size range M is restricted or that the actual set of

input sizes is sparse. If it is large, we could compute faster

at some cost to result quality by quantizing the set of sizes

considered.

3. APPLICATION TO RNA FOLDING

In this section we give a brief introduction to the RNA fold-

ing recurrence and its systolic arrays. These arrays have

been described in detail in our previous work [5].

Small RNA molecules carry out diverse functions in liv-

ing cells. An RNA is a linear sequence of bases from the

alphabet {A, C,G, U} whose function is determined by its

secondary structure. This structure is the folded shape that

results from pairing of complementary bases (mainly A-U

and C-G) within one sequence. Determining this structure is

key to analyses that identify and assign functions to RNAs.

The simplest secondary structure prediction algorithm is

due to Nussinov [4]. Given RNA sequence S of length N ,

the dynamic programming algorithm computes the largest

163

i

j

(a) The GKT array has the highest throughput but

uses the most resources.

k

j

(b) GJQ array

k

j

(c) Clustered version of GJQ array, which can

fold the longest sequences but has the lowest

throughput

Fig. 1. Hardware arrays generated to accelerate the Nussinov recurrence. Clustered and resource-intensive processing ele-

ments are shown by the dashed and solid boxes respectively.

Table 1. Parallel arrays for Nussinov recurrence. β: block

pipelining period. PEs: processing elements.

Array β # PEs Max. N

GKT N−1
2

N(N+1)
2

49

GJQ N − 2
N(N

2
+1)

2
81

GJQC 2N − 4
N(N

2
+1)

4
97

number of paired bases X(i, j) in any folded structure of

subsequence Si..Sj as follows:

X(i, j) = max

{

X(i + 1, j)
X(i, j − 1)
X(i + 1, j − 1) + γ(Si, Sj)
maxi<q<j [X(i, q) + X(q + 1, j)].

(2)

The score γ evaluates to 1 if bases Si and Sj may pair or

0 otherwise. The variable X is defined over the domain

1 ≤ i < j ≤ N ; the score of the best structure for the

whole sequence is X(1, N). We are interested only in the

score (i.e. whether the RNA is likely to fold), not the actual

structure.

In [5], we used formal synthesis techniques to derive two

systolic array families for the Nussinov recurrence: the GKT

and GJQ arrays. While both arrays have the same latency of

2N − 4, their throughput differs. The block pipelining pe-

riod β (reciprocal of throughput) of the GKT and GJQ arrays

is respectively 4× and 2× lower than the latency. Unfortu-

nately, increased throughput also results in a larger array; the

GKT array uses twice as many processing elements as the

GJQ array for the same input size. Table 1 summarizes these

results and shows the maximum size of RNA sequences that

can be folded on arrays synthesized on a Xilinx Virtex-4

LX100-12 FPGA device. All arrays run at 80 MHz; refer

to [5] for details on the hardware implementation.

New to this work, we have included a third array fam-

ily, a clustered version of GJQ that we call GJQC. The pro-

cessing elements of the GJQ array are only 50% efficient,

i.e., they are active in only one of every two clock cycles.

We can increase the array’s efficiency [6] by pipelining two

sequences simultaneously to achieve β = N − 2. Alterna-

tively, we may cluster two processing elements into one; we

call this the GJQC array. The throughput of the GJQC array

is reduced by half compared to GJQ, but clustering improves

space efficiency and so increases the size of the largest RNA

molecule that can be folded. The three arrays are illustrated

in Figure 1; the clustered processing elements in the GJQC

array are shown by dashed boxes.

Another source of parallelism for array design comes

from the discrete nature of the input stream. Because each

input sequence can be processed independently, we can in-

stantiate multiple copies of a small array to increase through-

put for small input sizes. For example, the GJQ array can be

instantiated on the target FPGA to fold sequences of length

up to 81 and has β = N − 2. Using the formula in Table 1,

we calculate that 1680 processing elements for the GJQ ar-

ray can be synthesized on the target FPGA. If we equally

divide these processing elements among two GJQ arrays of

the same size, we can effectively reduce the block pipelin-

ing period to N−2
2 . We can estimate the maximum size of k

identical GJQ arrays running in parallel by finding the posi-

tive solution to the equation N
2 (N

2 + 1) = 1680
k

(in general

this equation is not quadratic). For k = 2, we can instantiate

two copies of the GJQ array of size N = 56. In our op-

timization, we consider parallel instantiations of each array

164

 0 10 20 30 40 50 60 70 80 90
Sequence size

Multiple Arrays

GKT GJQ GJQC

Multiple Arrays

Single ArraySingle Array

Fig. 2. Optimal selection of Nussinov arrays to fold syn-

thetic sequences with normally distributed lengths. Top:

histogram and cumulative frequency of sequence lengths.

Middle: design with reconfigurations produced by our algo-

rithm. Bottom: best single array supporting all input lengths

(up to 97 bases). Size of each array instantiation is given by

length of longest sequence it processes.

type as another family of arrays available for use.

4. RESULTS

To gauge the performance impact of reconfiguration, we first

tested our algorithm on synthetic data. We generated se-

quences whose length was distributed according to geomet-

ric (p = 0.05), normal (µ = 48, σ = 25), and Pareto (order

0.6) distributions. We generated 1 billion bases in each case,

and all sequences were at most 97 bases in length. The syn-

thetic data represents ideal inputs with lengths biased toward

higher-throughput array sizes. We used the three arrays de-

scribed previously. We permitted a maximum of three par-

allel instantiations of each array running simultaneously on

the target FPGA. We assumed a reconfiguration time of 20
ms, as reported in [7].

The set of optimal arrays selected by our dynamic pro-

gramming algorithm for the normally distributed sequences

is shown in Figure 2 using three graphs. The top graph

shows both a histogram and the cumulative frequency of all

sequences. The traditional method selects a single array, in

this case the slower GJQC array, at a fixed size large enough

to fold all input sequences, as shown in the bottom graph.

GJQC was selected because it was the only array type that fit

on our FPGA given the sequence length requirement of 97.

The reconfigured solution is shown in the middle graph. Our

algorithm selects various instantiations of the GKT, GJQ,

and GJQC arrays to process subsets of the sequences. The

size of an array instantiation is the length of the longest se-

quence it executes. The number of stacked boxes indicate

the number of parallel instantiations of the array synthesized

on the FPGA. The number of columns denote the number of

array instantiations selected by the algorithm, in this case

eighteen. Our algorithm predicts a speedup of 4× over the

non-reconfigured solution. We obtained similarly encourag-

ing results for the geometric (20×) and Pareto (2×) distri-

butions.

4.1. Folding pyrosequencing reads

In the past decade, short (20-30 bases) noncoding RNAs

have been discovered to be important regulators of eukary-

otic genes [8]. One class of such RNAs is the microRNAs

(miRNAs). An important biological problem is how to de-

tect miRNA sequences in the genomic DNA from which

they are copied. Currently, new sequences are scanned com-

putationally to detect candidate miRNA precursor sequences,

which are then experimentally validated [9]. An important

feature of miRNA precursors is their distinctive secondary

structure, which can be detected in part by looking for an

unusually high number of paired bases when a short piece

of DNA is treated as RNA and folded. We use the Nussinov

algorithm to scan for high numbers of paired bases.

Large-scale genomic DNA sequencing today is done via

pyrosequencing, a massively parallel sequencing technique.

Pyrosequencing of a DNA sample can obtain short sequence

fragments (100 bases or less) at a rate of tens of millions

of bases per hour. While some pyrosequencing datasets are

assembled to produce one long genomic sequence, others,

especially environmental sequencing [10], sequence DNA

from many organisms at once and so remain highly frag-

mented. We therefore investigated the impact of our meth-

ods on the rate at which the Nussinov algorithm could be

applied for miRNA detection within the fragmentary DNA

produced by pyrosequencing.

We folded pyrosequencing reads from 130 environmen-

tal samples1. The dataset contained 22.6 million reads to-

taling 2.7 billion bases, with an average read length of 121.

For a software baseline, we wrote a C implementation of the

Nussinov recurrence compiled using gcc 4.1.2 with flags -

O3 -march=nocona -fomit-frame-pointer. The software was

run on a single core of a 3 GHz Intel Core 2 Duo CPU; it

folded all reads in the dataset in 18,215 seconds (excluding

I/O time).

The Nussinov arrays of the previous section were writ-

ten in VHDL and synthesized using the Xilinx toolchain

Release 9.2.04i for a Xilinx Virtex-4 LX100-12 FPGA de-

vice connected via PCI-X to two dual-core 2.4 GHz AMD

Opteron CPUs with 16 GB of memory, running 64-bit Linux.

The development system was provided by Exegy Inc2 and is

based on the Mercury prototyping system [11]. For recon-

figuration, our current system must load the FPGA config-

uration file from the host CPU’s memory and so has a re-

1http://scums.sdsu.edu/meta_overview.php
2http://www.exegy.com/

165

 0 10 20 30 40 50 60 70 80 90
Sequence size

Multiple Arrays

GKT GJQ GJQC

Multiple Arrays

Single ArraySingle Array

Fig. 3. Optimal selection of Nussinov arrays to fold pyrose-

quencing reads. Estimated speedup of the reconfigured so-

lution over the single-array approach was 51%; direct mea-

surement yielded 48%.

configuration time of 400 ms, dramatically longer than that

reported in [7].

Sorting and formatting the dataset for use by the hard-

ware takes significant execution time (> 70 seconds) using

a naive strategy. We may be able to accelerate this step to

achieve an efficient implementation using in-memory sort

for example. We have not included this cost in the execution

time of the software or either hardware runs.

To process all the collected reads, we split reads greater

than 97 bases into smaller chunks with an overlap of 25

bases. This increases the workload but enables us to fold

all sequences while still being long enough to predict im-

portant features of the structure. Figure 3 shows the results

of the experiment. Sequence lengths were heavily biased

toward the largest size supported by the hardware, which re-

quires our slowest array (GJQC); hence, we do not expect

a large speedup. Moreover, our algorithm selected fewer

instantiations of the arrays due to our hardware’s compara-

tively longer reconfiguration time. As expected, the GJQC

array was used for the longest reads, followed by the GJQ ar-

ray. Though the GKT array can be selected for reads smaller

than 50 bases, the algorithm preferred multiple units of GJQ,

which has higher throughput. The GKT array was used only

for sequences smaller than 34 bases. We predicted a speedup

of 51% for the reconfigured over the single-array solution.

Using the single-array solution, we achieved a runtime

of 107 seconds and a speedup of 170× over the software.

Runtime reconfiguration using our set of five arrays resulted

in an execution time of 72 seconds and an improved speedup

of 252× over the software. Indeed, runtime reconfigura-

tion resulted in 48% faster execution than the single latency-

space optimal array, closely matching our prediction. We

achieved significant speedups through runtime reconfigura-

tion despite the input’s bias toward long sequences requiring

the low-throughput GJQC array (accounting for 64 of the 72

 1

 10

 100

 0 2 4 6 8 10 12 14 16 18 20

S
p

e
e

d
u

p

Maximum designs

Maximum designs versus speedup

Geometric
Normal
Pareto

Pyrosequence Reads (20ms reconfig. time)
Pyrosequence Reads (400ms reconfig. time)

Fig. 4. Speedup of a reconfigured solution as a function of

the maximum number of instantiations allowed. We may

choose to limit the number of instantiations to the knee of

the curve in order to reduce synthesis time. The y axis is

shown in log scale.

seconds of execution). Finally, we note that input bandwidth

was not a limiting factor for performance.

4.2. Restricting the number of arrays

We continued our inquiry by investigating the performance

of reconfiguration when restricted to a limited number of

arrays. The number of arrays may be limited for two rea-

sons. First, if optimization selects arrays that have not yet

been synthesized, the cost of processing a data stream is in-

creased by the substantial costs of synthesis for each new

design used. Second, even if synthesis cost is discounted

(say, because a library of designs will be reused over many

datasets), the target platform may have limited storage to

hold alternative array designs (e.g. bitfiles for FPGAs) and

so may not support rapid reconfiguration among many de-

signs. For example, the system described in [7] can recon-

figure quickly from a set of configuration files kept in on-

board non-volatile storage, but this storage holds fewer than

six designs.

The algorithm of Equation 1 can easily be applied to a

restricted set of pre-synthesized array designs, but this does

not address the problem of selecting too many designs for

the target’s storage. To restrict the number of designs ac-

tually used in our reconfiguring solution, we modify Equa-

tion 1 to compute E(i, n), the minimum time required to

execute all inputs of length 1 to i using at most n array in-

stantiations.

E(i, n) =

min

(

E(i, n − 1)
min

1≤a≤|A|
min

1≤j<i

˘

E(j − 1, n − 1) + ρ + δa(j, i)
¯

(3)

The revised recurrence adds a factor of n to the running time.

166

Figure 4 shows how the best estimated speedup for our

real and synthetic datasets, compared to the single-array base-

line, varies with the number of designs allowed for recon-

figuration. The smallest number of designs that minimizes

execution time (computed using Equation 1) for the experi-

ments is shown by the arrows; solutions with more designs

have the same speedup. We can achieve 90% of the full

speedup available from reconfiguration using just two de-

signs for the pyrosequencing reads and 3-8 designs for the

synthetic data.

5. RELATED WORK

As far as we are aware, past work on space-time analysis

only finds a single optimal array; our’s is the first to take ad-

vantage of runtime reconfiguration to select multiple arrays

optimal for different input subsets.

Runtime reconfiguration has been successfully used on

FPGAs to improve the execution time of applications. Run-

time customization responds to input to produce optimized

designs, for example using constant propagation, precision

variation, and branch optimization. In the case of constant

propagation and precision variation, the circuit can be sim-

plified when the input data item is known, improving per-

formance and possibly reducing area requirements. In the

case of branch optimization, a frequently executed branch

case is optimized based on typical execution profiles. Spe-

cific application accelerators that use these techniques in-

clude SAT solvers, sequence alignment, and Viterbi decod-

ing. Our work is intended to be generally applicable to any

application specified as a recurrence. Runtime customiza-

tion techniques can be used to build systolic arrays for the

candidate list used by our dynamic programming algorithm.

Our array selection algorithm can be applied to improve

the performance of existing accelerators through runtime re-

configuration. For example, a recently published accelera-

tor for the Viterbi recurrence used in motif finding [12] ex-

pressly notes that runtime reconfiguration based on the input

model length is required for acceptable performance, though

the authors do not give an algorithm. In addition, it may be

possible to select alternate, less resource-intensive designs

for smaller input sequences when it can be guaranteed that

the sequence contains only a single copy of the input model.

6. CONCLUSION

Exploiting the power of reconfiguration can result in sig-

nificant performance improvements for systolic array im-

plementation of recurrences. We have described system-

atic algorithms to select array designs and reconfiguration

points so as to realize maximum performance. We have val-

idated our approach empirically and have obtained speedups

of 252× over software and 48% over non-reconfiguring hard-

ware for application of the Nussinov RNA folding algorithm

to short nucleic acid sequences.

One important direction for further study is whether one

can systematically exploit reconfiguration to improve per-

formance based on criteria other than input size. For exam-

ple, DNA sequence comparison algorithms in bioinformat-

ics exhibit performance that is sensitive to the percentages

of different DNA bases in each input. A second direction

for improvement would couple our algorithms to a tool that

automates formal synthesis and exploration of the space of

possible array designs, so that alternative families like those

we built for Nussinov can rapidly be generated for new com-

putational problems of interest.

7. REFERENCES

[1] P. Quinton, “The systematic design of systolic arrays,” in Au-

tomata Networks in Computer Science: Theory and Applica-

tions. Princeton University Press, 1987, pp. 229–260.

[2] D. Lavenier, P. Quinton, and S. Rajopadhye, “Advanced sys-

tolic design,” in Digital Signal Processing for Multimedia

Systems. CRC Press, 1999, pp. 657–692.

[3] J. Rosseel, F. Catthoor, and H. De Man, “An optimisation

methodology for array mapping of affine recurrence equa-

tions in video and image processing,” in Application-specific

Systems, Architectures and Processors, 1994, pp. 415–426.

[4] R. Nussinov, G. Pieczenik, J. R. Griggs, and D. J. Kleitman,

“Algorithms for loop matchings,” SIAM Journal on Applied

Mathematics, vol. 35, no. 1, pp. 68–82, July, 1978.

[5] A. Jacob, J. Buhler, and R. Chamberlain, “Accelerating

Nussinov RNA secondary structure prediction with systolic

arrays on FPGAs,” in Application-specific Systems, Architec-

tures and Processors, 2008, pp. 191–196.

[6] S. Y. Kung, VLSI array processors. Upper Saddle River, NJ,

USA: Prentice-Hall, Inc., 1987.

[7] B. C. Brodie, R. D. Chamberlain, B. Shands, and

J. White, “Dynamic reconfigurable computing.” in Military

and Aerospace Programmable Logic Devices, 2003.

[8] R. W. Carthew and E. J. Sontheimer, “Origins and mecha-

nisms of miRNAs and siRNAs.” Cell, vol. 136, no. 4, pp.

642–655, February 2009.

[9] E. Berezikov et al., “Approaches to microRNA discovery.”

Nature Genetics, vol. 38 Suppl 1, June 2006.

[10] C. S. Riesenfeld, P. D. Schloss, and J. Handelsman, “Metage-

nomics: genomic analysis of microbial communities.” An-

nual Review of Genetics, vol. 38, pp. 525–552, 2004.

[11] R. D. Chamberlain et al., “The Mercury System: Exploiting

truly fast hardware for data search,” in Proc. Int’l Workshop

on Storage Network Architecture and Parallel I/Os (SNAPI),

September 2003, pp. 65–72.

[12] S. Derrien and P. Quinton, “Parallelizing HMMER for hard-

ware acceleration on FPGAs,” Application-specific Systems,

Architectures and Processors, pp. 10–17, July 2007.

167

