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ABSTRACT

As multithreaded and reconfigurable logic architectur@y in increasing role in high-performance computing (HPC),
the scientific community is in need for new programming medet efficiently mapping existing applications to the new
parallel platforms. In this paper, we show how we can effetyi exploit tightly coupled fine-grained parallelism i ar
chitectures such as GPU and FPGA to speedup applicationshiks by uniform recurrence equations. We introduce the
concept of rolling partial-prefix sums to dynamically keegck of and resolve multiple dependencies without having to
evaluate intermediary values. Rolling partial-prefix swams applicable in low-latency evaluation of dynamic progra
ming problems expressed as uniform or affine equations. J@saour approach, we consider two common problems in
computational biology, hidden Markov models (HMMER) footgin motif finding and the Smith-Waterman algorithm.
We present a platform independent, linear time solution MMHER, which is traditionally solved in bilinear time, and a
platform independent, sub-linear time solution to Smitht¥¥man, which is normally solved in linear time.
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1. GENERAL ROLLING PARTIAL PREFIX-SUMS ALGORITHM

Let D be a finite domain of points. Each point can corresponds tacquarsub-problem or cell in a dynamic programming
matrix. Let F" be a function fromD to a “result” domain: (e.g., the real numbers) that corresponds to the computatio
the cost point inD. We seek to compute the valug$d) for a pointd € D. Let (X, A) form a commutative semigroup,
i.e., the operaton is a commutative, associative binary operator on results.

Suppose thak'(d) is computable for ang € D as follows:

F(d) = \(f1(d), f2(d), ..., fa(d)) (1)

where the summary, is the natural extension @f from two to any nonzero number of arguments. The summaryatqer
maps two or more values in the results domain into a singleeved the same domain. The functigi(d) is a mapping
from multiple (finite number of) points in the domain to one element in the results domain Here we consider only
monadic recurrences where the function can be written &sfsi

fi(d) = F(d') @ hi(d) 2

where® is a binary extension operator on the resifi{gl’) andh,(d) € ¥ is a "local” function that depends only af
such as a look-up table and can be computed without the kdgelef anyF'(d). The relationd’ < d must be satisfied,
according to a partial ordet, in order to avoid cyclic dependencies. The minimal elemefthe partial order are “base”
cases. A subsdB of D is said to be “sufficient” forl if every path of dependency fromhback to the base cases passes
through an element oB. The nature of this dependency imposes a sequential egacoftifunction F' as dictated by
the partial order. Therefore the number of algorithmic tisbeps for sequential execution grows as the size of domain
Dmodulo <, i.e., equal to total number of setsihsuch that any two elements from different sets follow theigkorder

but not any two elements within the same set. For many prabtém can grow significantly as the product of the input
sizes.
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In this paper, we introduce the technique of rolling parfiegfix-sum to extract parallel evaluations in recurrence
equations such as in Equation 1. Our approach extends tfig-puen algorithm by dynamically keeping track of and
resolves multiple dependencies without having to evaltizeintermediary values. More specifically, we expand the
prefix-sum approach to recurrences defined on a semiring andtvoduce the technique of rolling partial-prefix sums
for the same in order to extract parallel evaluations of #wirrence equations. This technique dynamically keepk tra
of and resolves the dependencies without evaluating teenmgdiary values. Our acceleration is applicable to theign
framework of recurrence equations defined on a semiring.wAcigmmon examples of the semirings encountered in the
context of dynamic programming are as follows:

> — R R R R R R R
A — 4+ min min max max max min
& — X + X + X min  max

The general algorithm for rolling partial prefix-sums catsiof five stages, executed in this order:

1. Confirm the monadic and semiring nature of the recurrencetqgns for a problem This is important for reducibil-
ity of the recurrence equations and partial prefix-sum datmn.

2. Identify the number of “sufficient” cases for each celThis is important to compute and maintain dependency
information.

3. Design the shape of wavefront(sThis is important for space requirement. The number of elemin the wave-
front(s) as well as the number of dependencies for each eledirtate the total space/memory requirement.

4. |dentify the direction of propagations for each wavefrenthis is important to ensure that the dependencies are
preserved or the net change in the number of dependencies-gasitive, for a stable computational requirement.
Each wavefront can propagate in an independent fashion.

5. Design the systolic array for implementation

We also describe how our technique can expose paralleligwmoimelevant applications in bioinformatics, the popular
HMMER?®2 program for protein motif finding (Section 2) and the Smitlaté/man algorithrhfor sequence alignment in
(Section 3). The recurrence equations in the two applinat&atisfy the above semiring requirement and thus our tech-
nigue of rolling partial prefix-sums can be applied to aceketheir evaluation on multithreaded and reconfiguraige!
architectures. In general, our technigue is applicabledblpms that fall in the general framework described abowkia
platform independent. The paper concludes by summarizingantributions and discussing related work (Section 4).

2. APPLICATION TO PLAN 7 HMM
2.1 Recurrences in Plan 7 HMM

Hidden Markov Model (HMMs}# are structured according to the Plan 7 schema. In this sghemd®M of lengthm
(e.g.,m = 5in Figure 1) containsn “match states’M;...M,,. A parallel sequence of “deletion states” stat®s..D,,,
allows any substring of sequence positions to be skippeieahother parallel set of “insertion stateg”..7,,_; allows

for substring insertions between any two sequence positibhe state®? and E' act as the HMM's initial and final states
in Figure 1. The feedback loop through stateallows for output sequences to be repeated. The decodind’tdra7
Hidden Markov Model via the Viterbi algorithm yields the nixim probability of the Hidden Markov Model emitting
the observed protein sequence. The vafé j) so obtained gives the best cost of aligning (the maximumaiibity of
observing) the first symbols of the protein sequence to the fjrstates of the HMM. The calculations are performed in the
log domain which eliminates floating point multiplicatiorihe costi” can be further broken down ind,,, V;, andVp,

i.e., the cost of aligning the firgstsymbols of the sequenaeto thejth match, insertion, and deletion states respectively.

V]W<i - 17] - 1) +T(] - 1501)7
o » Vili—1,j — 1)+ T( —1,c2),
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Figure 1. Plan 7 profile hidden Markov model of length= 5.
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For the above equations, it can be seen that the opefatermax and® is +. Regardless of whether the calculations
are performed in probability or log probability domain, ueence equations described by the associative openatars
and+ or x satisfy the semiring property and are amenable to this tqabn Here,T" is the look-up table containing the
HMM transition probabilities and,, - - - , cg are constant indices that denote the transitions betwéen — M;,I;_1 —
M;,Dj_y — M;,B— M;,M; — 1;,1I; — I;, M; _ — D;andD;_; — D, respectively. The corresponding rgw- 1
holds the transition data between HMM'’s (match, insertaond deletion) states at thie- 1th andjth positions along with
the transition to the beginning and end staeand E. The tablec,; ande; which is indexed by the sequence symbgl
and the HMM statg, stores the corresponding emission probability for thetsylm; for the match stat@/; and insertion
statel; respectively. It can be seen thgt) defined in Equation 2 for the current recurrencé'{s..) + e. Thus the table
needs to be accessed every iteration in order to computeatehpinsertion, and deletion costs. The cdtsandV; for
row i depend only on the corresponding valtgg, V; andVp, for previous rowi — 1. The termB;_1, which is the cost of
aligning the firsti — 1 input symbols to a sequence of HMM states ending in the begirstateB, depends only on costs
from the previous row. This value is determined only afterkhowledge of all the cells in row— 1 and thus it imposes a
computational dependency on the last cell in iow1 - after the knowledge of which, the value Bf_; can be computed
(see Figure 2). The presence of this term in the recurrengatien is characteristic to HMMER recurrence equations.

HMM positicm>

M
1 J

Sequence

Figure 2. Cell(¢, j) depends ot — 1,5 — 1), (¢,7 — 1), (¢ — 1, 5) and(z — 1, M). The dotted arrows indicate HMM dependencies and
solid arrows denote computational dependencies.

This dependence on last cell from previous row entails a rajonmorder of computation of the dynamic programming
matrix and thus eludes many parallelization techniques.ddpendency df (4, j) on the previous ceWVp (i, j — 1) also
entails a serial evaluation of each row which makes comjoui@tcomplexity of the syste®(M x L) for the dimensions
of the matrixA/ and L respectively. The memory requirementi$ M) to the store costs corresponding to a single row.



2.2 Sufficient Cases For Dependencies

The key for exposing parallelism in problems based on recue equations is to identify the dependencies and resolve
them dynamically throughout the execution. In this sectiva examine the dependency for a particular ¢2JR) and
move to a general cagé j). From the recurrence Equations 3-5:

VIL[(Q, 2) = €M ($27 2) + max { “//v ((11: )) ‘_:'_;—1((11, g;)), VI(B}; 2 ;(711,(;;)62)

With the values of costs from c€ll, 1) known, the expression fdry; (2, 2) can collapse to:
Var(2,2) = max(mag, By + miy) (6)
where

. Vu(1,1)+T(1,¢1), Vi(1,1)+T(1,co)
Mmoo = EM($272)+H1?LX{ VD(lu]-) —‘rT(l,Cd) (7)
andmi, = ep(22,2) + T(1,c4). The cost ofly, for any cell along the second row can be writtenlas(2,j) =
max(mgj, By + m%j) where the cost depends on the valueiaf Similarly, for any cell in the third row, the cosdty,
depends on the values &f and B,. Note that for any cell in row, the corresponding costg,, V;, andVp depend on
valuesBy, - - -, B;_1 only. By a mathematical induction argument, the costgffor any column; in row ¢ can be written
as:

VM(ia.j)_maX(mzjaBl +mz]ﬁ"' Bl 1+mZ 1) (8)

Similarly, the cost ofi’; for any cell(4, j) can be written as:

Vi(i,j) = max(ag;, By + ajj,- -+, Bio + al; ') (9)
Finally, V, for any cell(, j) can be written as:

Vp(i,j) = max(d};, By + dj, -+, Bi_y + di; ') (10)
for some numerlcal values);, a;, anddf; that describe the dependency of the costs on the valii®, ofrhe numerical

valuesm!, i Z . andd‘)j denote the mdependence of the costs. Therefore the chdepehdencies from celi, j) can be
found to pass through the sufficient cases with valBes - -, B; 1.

2.3 Wavefront Design and Propagation

With the above expressions in place, it is possible to canly the dependency information from the céll j) to the
dependent cell§i + 1,7), (i, + 1), and(i + 1,5 + 1) without having to know any of the values &, -+, B;_;. By
substituting the costs given by Equations 8, 9, and 10 intorélcurrence Equations 3, 4, and 5 and by comparing the
dependencies on either side of the equation, we get:

mf_Lj_l +T(G—1,¢1),
mf;j = enr(wi, j) + max af—l,j—l +T(j —1,c2), (12)
d§71,j71 + T(j - 1,03)

k .
k . mi_y;+T(j,¢5),
a; i = €r(x;,J) + max J : 12
g =@ g) { af ;4T co), (12)
and Gie,
+T] Cr
d¥ = max ” 1 ’ 13
1 { dkj 1+T(]708) ( )

wherek =0,1,---,i—1. FinaIIy, with the actual numerical value of a particulay known (whereB;, is determined from
By.—1 and the values o} ;), the dependency can be resolved by absorbing it into trepenident valum0 as follows:

0
mg; — max(m)

By, —|—m ) (14)
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Figure 3. (a) The elements can be computed as in the case of Smith-\Watalong the minor diagonal all at once. Once the numerical
value of B; is known, it is propagated to all the cells to resolve their dependendy;orfb) An alternative strategy for memory/area
constrained systems.

similarly:

ay; — max(ay;, By + afj) (15)

YR
dY; — max(dy;, By, + df;) (16)

R
Hence, the above recurrence equationSnfxﬁ;, afj, and dfj contain only local dependencies in contrast to the original
recurrence equation for the costs (see Equation 3). Thefmador evaluating Equations 17, 12, and 13, which follow
only local dependencies, is computed concurrently aloagtiti-diagonal as shown in Figure 3(a).

If L > M (i.e., the sequence length is greater than the HMM lengtmfrar of match states of the HMM) then the
wavefront is propagated along the sequence, with the &afieach new symbol as shown in Figure 3(a). At time-stép
there are\/ — 1 dependencieBy, - - - , By;_1 to keep track of. At the same instant, the top of the wavefpasses through
the cell(1, M) at which point the value aB; is determined. This information can be used to resolve tpemgency of all
elements orB; concurrently via Equations 14, 15, and 16. Similarly at teettime-step, an additional dependergy; is
encountered and dependencyBsis resolved concurrently. Following the same pattern, gttine step the elements in
wavefront depend only on the previolis — 2 values, whose dependencies can all be dynamically cadclitatd resolved
throughout the computation as described above. Hencegatinenolling partial prefix-sums. If. < M (i.e., the HMM
length is greater than the sequence), then the wavefronbjmpgated along the model axis. The elements in the wawefron
now have static dependencies which is preserved throughewgburse of computation.

2.4 Implementation via Systolic Array

The computation described above is implemented via a systwhy design. Since at any time stgphe entire wavefront

of length M cells depends on utmos{ — 2 values each, i.eB;_1, - -, B;—n+2, the memory requirement is bound to be
O(M?). The exact requirement is calculated by the @fif%‘ = (M — 2)(M — 1)/2, since each cell in the wavefront
has different number of dependencies. The layout of thebysirray is shown in Figure 4 where each row of the array
computes and updates dependencies of one cell of the waveanarked. This is realized by a triangular array and the
dependencies are shifted right each time step to make radimfoewest dependencies. The valuBpf ;. 5 is computed

by one element of the array represented by the unshaded Wiiick is then used to resolve the dependencies of all the
cells. At every successive iteration, update dependerioynivation following Equations (17-13), resolves any degmcy

via Equations (14-16); shift right operations are perfadmencurrently to make room for any new dependency. The size
of the systolic array is determined by the size (length) eflavefront. If. > M, the maximum length of wavefront i/

and takesM — 1)(M — 2)/2 elements to maintain and update the rolling dependencynirtion. The time complexity

is given by the time for the wavefront to sweep through théretynamic programming matrix and is bound by the sum
of HMM and sequence length@3(M + L).
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Figure 4. Systolic array design of parallel Plan 7 Viterbi decoding. Tladed elements hold and update the dependency on the variables
they are currently labeled by. At the next iteration, the cells are shiftetitaghake room for the new dependencies.

A HMM of approximately 700 positions (match states) regsiire245,000 concurrent updates, depending on represen-
tation of cost values. The current availability of sharedmogy resources in devices such as GPUs mandates the redesign
of some aspects of our algorithm. By tiling the dynamic pamgming matrix, shared memory requirements can be relaxed.
In order to limit the size of the wavefront, the matrix is tilalong the model axis as shown in the Figure 3(b). Depending
on the height of the tiles, the wavefront can be made to satisfy the memory constraliis works by processing input
symbols in batches, by propagating the wavefront along iitieeemodel axis, and by proceeding to the next batch. Since
the dependencies are static for each tile, the dynamicutsolof dependencies is not required. The boundary between
the tiles is resolved before the next input batch is proaks$ais requires two passes through each tile, first to etalua
the sufficient caseBy, - - -, B, and second to compute the boundary values. Thus the tolfftineach tile i(M + s)
with exactly L/s tiles to process. The total time taken to decode the sequs2¢d/ + s)L/s. The above algorithm is
still bilinear but with a speedup 6f/2 as opposed to a fully linear implementation. The speeduprnt#pon the size of the
batch processedand the memory requirement(is — 1)(s — 2)/2.

3. APPLICATION TO SMITH-WATERMAN
3.1 Recurrences in Smith-Waterman
The recurrence equations for the Smith-Watertralgorithm with affine gap penalties and substitution costs a
M(Z — 1,] — ].) + T(IL’i,yj),

M(Zm]) = max II(Z_Lj—l)‘i‘T(l'“yj), (17)
IU(Z -1j- 1) + T(in,yj)

Iw(i,j):max{ 2*133 (18)
Iy(i7j):max{ IE’?:B o (19)

The sequences are denoted:bydatabase) ang (query) of lengthsX andY respectively. We can assunié > Y
without loss of generalityA and B are gap-open and gap-extent penalties Arigl the table of substitution costs. It can
be seen that the above recurrence equations resemble theBRMduations except for the term involvidgy which is
missing in Smith-Waterman. Therefore the dependencidssrapplication are reduced to simple local dependencies. T
equations are traditionally evaluated by propagating th®nrdiagonal along the database or query axis in a finaigahi
parallel architecture, thus takif@(X + Y") time to evaluate the final alignment cast(Y, X). In our approach, we take
advantage of local dependencies in the recurrence egedti@valuate the final alignment cost in sub-linear time euith
any heuristics.



3.2 Sufficient Cases For Dependencies
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Figure 5. Partitioning of the Smith-Waterman dynamic programming matrix/npartitions to speedup the evaluation.

As shown in Figure 5, we partition the entire dynamic prograng matrix into P partitions with length of each
partition X/ P. The sufficient cases (dependencies) for any @ejl) in partitionp areB,_1 1, - - -, Bp—1,; With utmostY”
sufficient cases (dependencies) for any cell in the entirgixndf we assume that” < X/P, this case study is similar
to the HMMER application with sequence shorter than the HMNgth < M). Each partition statically depends on
utmostY” values, thus eliminating the need for rolling dynamic dejety resolution.

3.3 Wavefront Propagation

By choosingP wavefronts along the anti-diagonal for each partition, pethelency relation is built between the sufficient
casesB;; andB;1,; via a relation akin to Equations 8-10 Xi/P + Y time-steps. With the knowledge &f,1, - - -, Biy
determined afteX /P + Y time-steps and the dependency information relafiagto B, ; known, the dependencies
are resolved via equations identical to Equations 14-16e fbkal latency to propagate the dependencies along all the
partitions isP. Thus the total time to determining the final alignment dds#, X) is X/ P+ P+Y . The optimal number

of partitionsP is v/ X and the optimal time i8v/X + Y. If Y is comparable toX, the query axis can also be partitioned
similarly to accelerate the evaluation.

3.4 Systolic Array

Due to the similarity of recurrence equations to the HMMERImation, the systolic array follows the same design.
Since each wavefront is implemented as a different systoiy of sizeY — 1)(Y — 2)/2, the total size requirement is
O(P x Y?). The size required for the minimum latency systolic array' & (Y — 1)(Y — 2)/2.

4. DISCUSSION AND RELATED WORK

In this paper we expand the prefix-sum approach to exposégdara for recurrences defined on a semiring. The prefix-
sum algorithm is traditionally applied to simple assos@tiperators.We extend this algorithm by introducing the concept
of rolling partial prefix-sums that allows us to dynamica#golve dependencies at run-time. We present two applicati

of our approach to dynamic programming problems (i.e., taa P HMM and Smith-Waterman) for which we use rolling
partial prefix-sums to decrease the time-complexity of trumtions supported by the most suitable choice of wanéfro
and propagation direction. In particular, the time comitefor HMMER recurrences decreases frab{M x L) to
O(M + L) with the additional space requirement frani) to O(M?). Similarly, the Smith-Waterman or edit-distance
type recurrences can be solved@i2v/X + Y) time; traditionally it is solved irO(X + Y). Memory requirement for
Smith-Waterman become3(v/X x Y2) for X > Y - itis normally O(Y"). A successful application of this technique
for HMMER recurrence is presented in previous work of théat wherein the evaluation of the dynamic programming
matrix is parallelized in one dimension along each row. Tiniglementation is mapped to the GPU architecture due to the
similarity of the arithmetic operations and uniformity oemory accesses. A significant speedup is obtained compared t
other popular implementation on the same architecture.

The novelty of our work is in the proposed algorithmic impeowent. Prefix-sums have been applied to bio-sequence
comparisonfor parallelizing evaluations of rows. Automatic genesatdf systolic arrays to implement pipelined eval-
uation of uniform and affine recurrence equatfohave been studied and found to give significant speedup foyma



problems. Numerous accelerators for HMMER and Smith-Wiader exist for which the evaluation time is decreased via
a combination of architectural improvemeft¥ 12 data path redesigh¥,;*® and heuristic$?2° To our best knowledge,
none of the accelerators mentioned above do rely exclysreblgorithmic improvement techniques as we do. Thus our
approach can be considered highly platform independent.
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