
Rolling Partial Prefix-Sums To Speedup Evaluation of Uniform and
Affine Recurrence Equations

Narayan Ganesan1, Roger D. Chamberlain2, Jeremy Buhler2 and Michela Taufer1

1Computer and Information Sciences, University of Delaware
2Computer Science and Engineering, Washington University inSt. Louis

ABSTRACT

As multithreaded and reconfigurable logic architectures play an increasing role in high-performance computing (HPC),
the scientific community is in need for new programming models for efficiently mapping existing applications to the new
parallel platforms. In this paper, we show how we can effectively exploit tightly coupled fine-grained parallelism in ar-
chitectures such as GPU and FPGA to speedup applications described by uniform recurrence equations. We introduce the
concept of rolling partial-prefix sums to dynamically keep track of and resolve multiple dependencies without having to
evaluate intermediary values. Rolling partial-prefix sumsare applicable in low-latency evaluation of dynamic program-
ming problems expressed as uniform or affine equations. To assess our approach, we consider two common problems in
computational biology, hidden Markov models (HMMER) for protein motif finding and the Smith-Waterman algorithm.
We present a platform independent, linear time solution to HMMER, which is traditionally solved in bilinear time, and a
platform independent, sub-linear time solution to Smith-Waterman, which is normally solved in linear time.

Keywords: Dynamic Programming, HMMER, Protein-Motif Finding, GPUs,Parallelization, Computational Biology

1. GENERAL ROLLING PARTIAL PREFIX-SUMS ALGORITHM

Let D be a finite domain of points. Each point can corresponds to a unique sub-problem or cell in a dynamic programming
matrix. LetF be a function fromD to a “result” domainΣ (e.g., the real numbers) that corresponds to the computation of
the cost point inD. We seek to compute the valuesF (d) for a pointd ∈ D. Let (Σ,∧) form a commutative semigroup,
i.e., the operator∧ is a commutative, associative binary operator on results.

Suppose thatF (d) is computable for anyd ∈ D as follows:

F (d) =
∧

(f1(d), f2(d), . . . , fn(d)) (1)

where the summary
∧

is the natural extension of∧ from two to any nonzero number of arguments. The summary operator
maps two or more values in the results domain into a single value in the same domain. The functionfi(d) is a mapping
from multiple (finite number of) points in the domainD to one element in the results domainΣ. Here we consider only
monadic recurrences where the function can be written as follows:

fi(d) = F (d′)⊕ hi(d) (2)

where⊕ is a binary extension operator on the resultsF (d′) andhi(d) ∈ Σ is a ”local” function that depends only ond,
such as a look-up table and can be computed without the knowledge of anyF (d). The relationd′ < d must be satisfied,
according to a partial order<, in order to avoid cyclic dependencies. The minimal elements of the partial order are “base”
cases. A subsetB of D is said to be “sufficient” ford if every path of dependency fromd back to the base cases passes
through an element ofB. The nature of this dependency imposes a sequential execution of functionF as dictated by
the partial order. Therefore the number of algorithmic time-steps for sequential execution grows as the size of domain
Dmodulo <, i.e., equal to total number of sets inD such that any two elements from different sets follow the partial order
but not any two elements within the same set. For many problems this can grow significantly as the product of the input
sizes.

E-mail: ganesan@udel.edu, roger@wustl.edu, jbuhler@wustl.edu, taufer@udel.edu

In this paper, we introduce the technique of rolling partialprefix-sum to extract parallel evaluations in recurrence
equations such as in Equation 1. Our approach extends the prefix-sum algorithm by dynamically keeping track of and
resolves multiple dependencies without having to evaluatethe intermediary values. More specifically, we expand the
prefix-sum approach to recurrences defined on a semiring and we introduce the technique of rolling partial-prefix sums
for the same in order to extract parallel evaluations of the recurrence equations. This technique dynamically keeps track
of and resolves the dependencies without evaluating the intermediary values. Our acceleration is applicable to the general
framework of recurrence equations defined on a semiring. A few common examples of the semirings encountered in the
context of dynamic programming are as follows:

Σ — R R R R R R R

∧ — + min min max max max min
⊕ — × + × + × min max

The general algorithm for rolling partial prefix-sums consists of five stages, executed in this order:

1. Confirm the monadic and semiring nature of the recurrence equations for a problem- This is important for reducibil-
ity of the recurrence equations and partial prefix-sum calculation.

2. Identify the number of “sufficient” cases for each cell- This is important to compute and maintain dependency
information.

3. Design the shape of wavefront(s)- This is important for space requirement. The number of elements in the wave-
front(s) as well as the number of dependencies for each element dictate the total space/memory requirement.

4. Identify the direction of propagations for each wavefront- This is important to ensure that the dependencies are
preserved or the net change in the number of dependencies is non-positive, for a stable computational requirement.
Each wavefront can propagate in an independent fashion.

5. Design the systolic array for implementation

We also describe how our technique can expose parallelism intwo relevant applications in bioinformatics, the popular
HMMER1,2 program for protein motif finding (Section 2) and the Smith-Waterman algorithm3 for sequence alignment in
(Section 3). The recurrence equations in the two applications satisfy the above semiring requirement and thus our tech-
nique of rolling partial prefix-sums can be applied to accelerate their evaluation on multithreaded and reconfigurable logic
architectures. In general, our technique is applicable to problems that fall in the general framework described above and is
platform independent. The paper concludes by summarizing our contributions and discussing related work (Section 4).

2. APPLICATION TO PLAN 7 HMM

2.1 Recurrences in Plan 7 HMM

Hidden Markov Model (HMMs)2,4 are structured according to the Plan 7 schema. In this schema, a HMM of lengthm
(e.g.,m = 5 in Figure 1) containsm “match states”M1...Mm. A parallel sequence of “deletion states” statesD2...Dm−1

allows any substring of sequence positions to be skipped, while another parallel set of “insertion states”I1...Im−1 allows
for substring insertions between any two sequence positions. The statesB andE act as the HMM’s initial and final states
in Figure 1. The feedback loop through stateJ allows for output sequences to be repeated. The decoding of aPlan 7
Hidden Markov Model via the Viterbi algorithm yields the maximum probability of the Hidden Markov Model emitting
the observed protein sequence. The valueV (i, j) so obtained gives the best cost of aligning (the maximum probability of
observing) the firsti symbols of the protein sequence to the firstj states of the HMM. The calculations are performed in the
log domain which eliminates floating point multiplications. The costV can be further broken down intoVM , VI , andVD,
i.e., the cost of aligning the firsti symbols of the sequencex to thejth match, insertion, and deletion states respectively.

VM (i, j) = ǫM (xi, j) + max

VM (i− 1, j − 1) + T (j − 1, c1),
VI(i− 1, j − 1) + T (j − 1, c2),
VD(i− 1, j − 1) + T (j − 1, c3),

Bi−1 + T (j, c4)

(3)

M1 M2 M3

D2

M4 M5

I2 I3 I4

D3 D4

J

M4

I4

D4

VD

VI

VM

B
S

I1

E T
N

C

Figure 1. Plan 7 profile hidden Markov model of lengthm = 5.

VI(i, j) = ǫI(xi, j) + max

{

VM (i− 1, j) + T (j, c5),
VI(i− 1, j) + T (j, c6)

(4)

VD(i, j) = max

{

VM (i, j − 1) + T (j, c7),
VD(i, j − 1) + T (j, c8)

(5)

For the above equations, it can be seen that the operator
∧

is max and⊕ is +. Regardless of whether the calculations
are performed in probability or log probability domain, recurrence equations described by the associative operatorsmax
and+ or× satisfy the semiring property and are amenable to this technique. Here,T is the look-up table containing the
HMM transition probabilities andc1, · · · , c8 are constant indices that denote the transitions betweenMj−1 →Mj , Ij−1 →
Mj ,Dj−1 →Mj , B →Mj ,Mj → Ij , Ij → Ij ,Mj−1 → Dj andDj−1 → Dj respectively. The corresponding rowj−1
holds the transition data between HMM’s (match, insertion,and deletion) states at thej − 1th andjth positions along with
the transition to the beginning and end statesB andE. The tableǫM andǫI which is indexed by the sequence symbolxi

and the HMM statej, stores the corresponding emission probability for the symbol xi for the match stateMj and insertion
stateIj respectively. It can be seen thath(.) defined in Equation 2 for the current recurrence isT (...) + ǫ. Thus the table
needs to be accessed every iteration in order to compute the match, insertion, and deletion costs. The costsVM andVI for
row i depend only on the corresponding valuesVM , VI andVD for previous rowi− 1. The termBi−1, which is the cost of
aligning the firsti− 1 input symbols to a sequence of HMM states ending in the beginning stateB, depends only on costs
from the previous row. This value is determined only after the knowledge of all the cells in rowi− 1 and thus it imposes a
computational dependency on the last cell in rowi− 1 - after the knowledge of which, the value ofBi−1 can be computed
(see Figure 2). The presence of this term in the recurrence equation is characteristic to HMMER recurrence equations.

Figure 2. Cell(i, j) depends on(i− 1, j− 1), (i, j− 1), (i− 1, j) and(i− 1, M). The dotted arrows indicate HMM dependencies and
solid arrows denote computational dependencies.

This dependence on last cell from previous row entails a row major order of computation of the dynamic programming
matrix and thus eludes many parallelization techniques. The dependency ofVD(i, j) on the previous cellVD(i, j − 1) also
entails a serial evaluation of each row which makes computational complexity of the systemO(M ×L) for the dimensions
of the matrixM andL respectively. The memory requirement isO(M) to the store costs corresponding to a single row.

2.2 Sufficient Cases For Dependencies

The key for exposing parallelism in problems based on recurrence equations is to identify the dependencies and resolve
them dynamically throughout the execution. In this section, we examine the dependency for a particular cell(2, 2) and
move to a general case(i, j). From the recurrence Equations 3-5:

VM (2, 2) = ǫM (x2, 2) + max

{

VM (1, 1) + T (1, c1), VI(1, 1) + T (1, c2)
VD(1, 1) + T (1, c3), B1 + T (1, c4)

With the values of costs from cell(1, 1) known, the expression forVM (2, 2) can collapse to:

VM (2, 2) = max(m22, B1 + m1
22) (6)

where

m22 = ǫM (x2, 2) + max

{

VM (1, 1) + T (1, c1), VI(1, 1) + T (1, c2)
VD(1, 1) + T (1, c3)

(7)

andm1
22 = ǫM (x2, 2) + T (1, c4). The cost ofVM for any cell along the second row can be written asVM (2, j) =

max(m0
2j , B1 + m1

2j) where the cost depends on the value ofB1. Similarly, for any cell in the third row, the costVM

depends on the values ofB1 andB2. Note that for any cell in rowi, the corresponding costsVM , VI , andVD depend on
valuesB1, · · · , Bi−1 only. By a mathematical induction argument, the cost ofVM for any columnj in row i can be written
as:

VM (i, j) = max(m0
ij , B1 + m1

ij , · · · , Bi−1 + mi−1

ij) (8)

Similarly, the cost ofVI for any cell(i, j) can be written as:

VI(i, j) = max(a0
ij , B1 + a1

ij , · · · , Bi−1 + ai−1

ij) (9)

Finally, VD for any cell(i, j) can be written as:

VD(i, j) = max(d0
ij , B1 + d1

ij , · · · , Bi−1 + di−1

ij) (10)

for some numerical valuesmk
ij , a

k
ij , anddk

ij that describe the dependency of the costs on the value ofBk. The numerical
valuesm0

ij , a
0
ij , andd0

ij denote the independence of the costs. Therefore the chain ofdependencies from cell(i, j) can be
found to pass through the sufficient cases with valuesB1, · · · , Bi−1.

2.3 Wavefront Design and Propagation

With the above expressions in place, it is possible to carry only the dependency information from the cell(i, j) to the
dependent cells(i + 1, j), (i, j + 1), and(i + 1, j + 1) without having to know any of the values ofB1, · · · , Bi−1. By
substituting the costs given by Equations 8, 9, and 10 into the recurrence Equations 3, 4, and 5 and by comparing the
dependencies on either side of the equation, we get:

mk
i,j = ǫM (xi, j) + max

mk
i−1,j−1 + T (j − 1, c1),

ak
i−1,j−1 + T (j − 1, c2),

dk
i−1,j−1 + T (j − 1, c3)

(11)

ak
i,j = ǫI(xi, j) + max

{

mk
i−1,j + T (j, c5),

ak
i−1,j + T (j, c6),

(12)

and

dk
ij = max

{

mk
i,j−1 + T (j, c7),

dk
i,j−1 + T (j, c8)

(13)

wherek = 0, 1, · · · , i−1. Finally, with the actual numerical value of a particularBk known (whereBk is determined from
Bk−1 and the values ofmk

kj), the dependency can be resolved by absorbing it into the independent valuem0
ij as follows:

m0
ij ← max(m0

ij , Bk + mk
ij) (14)

(a) (b)

Figure 3. (a) The elements can be computed as in the case of Smith-Waterman along the minor diagonal all at once. Once the numerical
value ofBi is known, it is propagated to all the cells to resolve their dependency onBi. (b) An alternative strategy for memory/area
constrained systems.

similarly:

a0
ij ← max(a0

ij , Bk + ak
ij) (15)

d0
ij ← max(d0

ij , Bk + dk
ij) (16)

Hence, the above recurrence equations formk
ij , a

k
ij , anddk

ij contain only local dependencies in contrast to the original
recurrence equation for the costs (see Equation 3). The wavefront for evaluating Equations 17, 12, and 13, which follow
only local dependencies, is computed concurrently along the anti-diagonal as shown in Figure 3(a).

If L > M (i.e., the sequence length is greater than the HMM length (number of match states of the HMM) then the
wavefront is propagated along the sequence, with the arrival of each new symbol as shown in Figure 3(a). At time-stepM ,
there areM−1 dependenciesB1, · · · , BM−1 to keep track of. At the same instant, the top of the wavefrontpasses through
the cell(1,M) at which point the value ofB1 is determined. This information can be used to resolve the dependency of all
elements onB1 concurrently via Equations 14, 15, and 16. Similarly at the next time-step, an additional dependencyBM is
encountered and dependency onB2 is resolved concurrently. Following the same pattern, at any time step the elements in
wavefront depend only on the previousM − 2 values, whose dependencies can all be dynamically calculated and resolved
throughout the computation as described above. Hence, the namerolling partial prefix-sums. IfL < M (i.e., the HMM
length is greater than the sequence), then the wavefront is propagated along the model axis. The elements in the wavefront
now have static dependencies which is preserved throughoutthe course of computation.

2.4 Implementation via Systolic Array

The computation described above is implemented via a systolic array design. Since at any time stepi, the entire wavefront
of lengthM cells depends on utmostM − 2 values each, i.e.,Bi−1, · · · , Bi−M+2, the memory requirement is bound to be
O(M2). The exact requirement is calculated by the sum

∑M−2

i=1
i = (M − 2)(M − 1)/2, since each cell in the wavefront

has different number of dependencies. The layout of the systolic array is shown in Figure 4 where each row of the array
computes and updates dependencies of one cell of the wavefront as marked. This is realized by a triangular array and the
dependencies are shifted right each time step to make room for the newest dependencies. The value ofBi−M+2 is computed
by one element of the array represented by the unshaded blockwhich is then used to resolve the dependencies of all the
cells. At every successive iteration, update dependency information following Equations (17-13), resolves any dependency
via Equations (14-16); shift right operations are performed concurrently to make room for any new dependency. The size
of the systolic array is determined by the size (length) of the wavefront. IfL > M , the maximum length of wavefront isM
and takes(M − 1)(M − 2)/2 elements to maintain and update the rolling dependency information. The time complexity
is given by the time for the wavefront to sweep through the entire dynamic programming matrix and is bound by the sum
of HMM and sequence lengthsO(M + L).

y i -M +1,

numerical value

Cell (i-M+2, M-1)

yi - 1 yi-2 yi-M+1Cell (i, 1)

Cell (i-1, 2)

Cell (i-M+1, M)

yi-M+1

yi-M+1

yi-M+1

yi-M+1

yi-M+1

yi-M+1

yi-M+1

yi-3

yi-4

yi-5

Figure 4. Systolic array design of parallel Plan 7 Viterbi decoding. The shaded elements hold and update the dependency on the variables
they are currently labeled by. At the next iteration, the cells are shifted right to make room for the new dependencies.

A HMM of approximately 700 positions (match states) requires∼ 245,000 concurrent updates, depending on represen-
tation of cost values. The current availability of shared memory resources in devices such as GPUs mandates the redesign
of some aspects of our algorithm. By tiling the dynamic programming matrix, shared memory requirements can be relaxed.
In order to limit the size of the wavefront, the matrix is tiled along the model axis as shown in the Figure 3(b). Depending
on the height of the tiless, the wavefront can be made to satisfy the memory constraints. This works by processing input
symbols in batches, by propagating the wavefront along the entire model axis, and by proceeding to the next batch. Since
the dependencies are static for each tile, the dynamic resolution of dependencies is not required. The boundary between
the tiles is resolved before the next input batch is processed. This requires two passes through each tile, first to evaluate
the sufficient casesB1, · · · , Bs and second to compute the boundary values. Thus the total time for each tile is2(M + s)
with exactlyL/s tiles to process. The total time taken to decode the sequenceis 2(M + s)L/s. The above algorithm is
still bilinear but with a speedup ofs/2 as opposed to a fully linear implementation. The speedup depends on the size of the
batch processeds and the memory requirement is(s− 1)(s− 2)/2.

3. APPLICATION TO SMITH-WATERMAN

3.1 Recurrences in Smith-Waterman
The recurrence equations for the Smith-Waterman3 algorithm with affine gap penalties and substitution costs are:

M(i, j) = max

M(i− 1, j − 1) + T (xi, yj),
Ix(i− 1, j − 1) + T (xi, yj),
Iy(i− 1, j − 1) + T (xi, yj)

(17)

Ix(i, j) = max

{

M(i− 1, j)−A,
Ix(i− 1, j)−B

(18)

Iy(i, j) = max

{

M(i, j − 1)−A,
Iy(i, j − 1)−B

(19)

The sequences are denoted byx (database) andy (query) of lengthsX andY respectively. We can assumeX ≫ Y
without loss of generality.A andB are gap-open and gap-extent penalties andT is the table of substitution costs. It can
be seen that the above recurrence equations resemble the HMMER equations except for the term involvingBi which is
missing in Smith-Waterman. Therefore the dependencies in this application are reduced to simple local dependencies. The
equations are traditionally evaluated by propagating the minor-diagonal along the database or query axis in a fine-grained
parallel architecture, thus takingO(X + Y) time to evaluate the final alignment costM(Y,X). In our approach, we take
advantage of local dependencies in the recurrence equations to evaluate the final alignment cost in sub-linear time without
any heuristics.

3.2 Sufficient Cases For Dependencies

Figure 5. Partitioning of the Smith-Waterman dynamic programming matrix intoP partitions to speedup the evaluation.

As shown in Figure 5, we partition the entire dynamic programming matrix intoP partitions with length of each
partitionX/P . The sufficient cases (dependencies) for any cell(i, j) in partitionp areBp−1,1, · · · , Bp−1,i with utmostY
sufficient cases (dependencies) for any cell in the entire matrix. If we assume thatY < X/P , this case study is similar
to the HMMER application with sequence shorter than the HMM length (L < M). Each partition statically depends on
utmostY values, thus eliminating the need for rolling dynamic dependency resolution.

3.3 Wavefront Propagation

By choosingP wavefronts along the anti-diagonal for each partition, a dependency relation is built between the sufficient
casesBij andBi+1,j via a relation akin to Equations 8-10 inX/P + Y time-steps. With the knowledge ofB11, · · · , B1Y

determined afterX/P + Y time-steps and the dependency information relatingBij to Bi+1,j known, the dependencies
are resolved via equations identical to Equations 14-16. The total latency to propagate the dependencies along all the
partitions isP . Thus the total time to determining the final alignment costM(Y,X) is X/P +P +Y . The optimal number
of partitionsP is

√
X and the optimal time is2

√
X + Y . If Y is comparable toX, the query axis can also be partitioned

similarly to accelerate the evaluation.

3.4 Systolic Array

Due to the similarity of recurrence equations to the HMMER application, the systolic array follows the same design.
Since each wavefront is implemented as a different systolicarray of size(Y − 1)(Y − 2)/2, the total size requirement is
O(P × Y 2). The size required for the minimum latency systolic array is

√
X(Y − 1)(Y − 2)/2.

4. DISCUSSION AND RELATED WORK

In this paper we expand the prefix-sum approach to expose parallelism for recurrences defined on a semiring. The prefix-
sum algorithm is traditionally applied to simple associative operators.5 We extend this algorithm by introducing the concept
of rolling partial prefix-sums that allows us to dynamicallyresolve dependencies at run-time. We present two applications
of our approach to dynamic programming problems (i.e., the Plan 7 HMM and Smith-Waterman) for which we use rolling
partial prefix-sums to decrease the time-complexity of the evaluations supported by the most suitable choice of wavefront
and propagation direction. In particular, the time complexity for HMMER recurrences decreases fromO(M × L) to
O(M + L) with the additional space requirement fromO(M) to O(M2). Similarly, the Smith-Waterman or edit-distance
type recurrences can be solved inO(2

√
X + Y) time; traditionally it is solved inO(X + Y). Memory requirement for

Smith-Waterman becomesO(
√

X × Y 2) for X ≫ Y - it is normallyO(Y). A successful application of this technique
for HMMER recurrence is presented in previous work of the authors6 wherein the evaluation of the dynamic programming
matrix is parallelized in one dimension along each row. Thisimplementation is mapped to the GPU architecture due to the
similarity of the arithmetic operations and uniformity of memory accesses. A significant speedup is obtained compared to
other popular implementation on the same architecture.7

The novelty of our work is in the proposed algorithmic improvement. Prefix-sums have been applied to bio-sequence
comparisons8 for parallelizing evaluations of rows. Automatic generation of systolic arrays to implement pipelined eval-
uation of uniform and affine recurrence equations9 have been studied and found to give significant speedup for many

problems. Numerous accelerators for HMMER and Smith-Waterman exist for which the evaluation time is decreased via
a combination of architectural improvements,8,10–12 data path redesign,13–18 and heuristics.19,20 To our best knowledge,
none of the accelerators mentioned above do rely exclusively on algorithmic improvement techniques as we do. Thus our
approach can be considered highly platform independent.

5. ACKNOWLEDGMENTS

This research was supported by NIH award HG003225, NSF awards DBI-0237902, ITR-0427794, #0941318, #0922657,
the U.S. Army grant #ARO 54723-CS, the NVIDIA University Professor Partnership Program and Exegy, Inc. R.D.
Chamberlain is a principal in Exegy, Inc.

REFERENCES

[1] Eddy, S., “Profile hidden markov models,”Bioinformatics14, 755–863 (1998).
[2] Eddy, S., “HMMER: Profile HMMs for protein sequence analysis.” http://hmmer.janelia.org (2004).
[3] Smith, T. F. and Waterman, M. S., “Identification of common molecular subsequences,”J. Molecular Biology147,

195–97 (mar 1981).
[4] Krogh, A. et al., “Hidden markov models in computationalbiology: Applications to protein modeling,”J. Molecular

Biology235, 1501–1531 (1994).
[5] Blelloch, G. E., “Prefix sums and their applications,” in[Synthesis of Parallel Algorithms], Reif, J. H., ed., Morgan

Kaufmann (1990).
[6] Ganesan, N., Chamberlain, R. D., Buhler, J., and Taufer,M., “Accelerating HMMER on GPUs by implementing

hybrid data and task parallelism,” in [Proc. of the First ACM Int. Conf. on Bioinformatics and Computational Biology
(ACM BCB)], (2010).

[7] Walters, J. P., Balu, V., Kompalli, S., and Chaudhary, V., “Evaluating the use of GPUs in liver image segmentation
and HMMER database searches,” in [Proc. of IEEE Int. Parallel and Distributed Processing Symposium (IPDPS)],
(2009).

[8] Aluru, S., Futamura, N., and Mehrotra, K., “Parallel biological sequence comparison using prefix computations,”J.
Parallel and Distributed Computing63(3), 264–272 (2003).

[9] Quinton, P., “The systematic design of systolic arrays,” in [Automata Networks in Computer Science: Theory and
Applications], 229–260, Princeton University Press (1987).

[10] Walters, J., Qudah, B., and Chaudhary, V., “Accelerating the HMMER sequence analysis suite using conventional
processors,” in [Proceedings of AINA], (2006).

[11] Hughey, R., “Parallel hardware for sequence comparison and alignment,”Comput. Appl. Biosci.12, 473–479 (1996).
[12] Woznaik, A., “Using video-oriented instructions to speed up sequence comparison,”Comput. Appl. Biosci.13, 145–

150 (1997).
[13] Horn, D., Houston, M., and Hanrahan, P., “ClawHMMER: A streaming HMMER-search implementation,” in [Proc.

of the ACM/IEEE Conference on Supercomputing (SC)], (2005).
[14] Farrar, M., “Striped Smith-Waterman speeds database searches six times over other SIMD implementations,”Bioin-

formatics23, 156–161.
[15] Lindahl, E., “Altivec HMMER, version 2.3.2.” http://powerdev.osuosl.org/project/hmmerAltivecGen2mod/.
[16] Rognes, T. and Seeberg, E., “Six-fold speed-up of Smith-Waterman sequence database searches using parallel pro-

cessing on common microprocessors,”Bioinformatics16(8), 699–706 (2000).
[17] Derrien, S. and Quinton, P., “Parallelizing HMMER for hardware acceleration on FPGAs,” in [Proc. of Application-

specific Systems, Architectures and Processors Conf.], 10–17 (jul 2007).
[18] Oliver, T., Yeow, L. Y., and Schmidt, B., “Integrating FPGA acceleration into HMMER,”Parallel Computing34(11),

681–691 (2008).
[19] Maddimsetty, R., Buhler, J., Chamberlain, R., Franklin, M., and Harris, B., “Accelerator design for protein sequence

HMM-search,” in [Proc. 20th ACM International Conference on Supercomputing], 288–296 (2006).
[20] Jacob, A., Lancaster, J., Buhler, J., and Chamberlain,R., “Preliminary results in accelerating profile HMM searchon

FPGAs,” in [Proc. of Workshop on High Performance Computational Biology (HiCOMB)], (2007).

