
1

CSE 102 – Studio 1

Introduction to Studio
The studio experience is quite similar to what you have previously experienced in CSE 131.

Tell Us About Yourself
Individually, please complete this survey asking about skills topics that we plan to incorporate into
CSE 102. What do you already know about topics we are considering, and what additional topics would
you like us to include?

Also, please individually tell us when your schedule is sufficiently open that if we schedule help sessions
then you could make it to them.

Next, on to the good stuff (do the following activities in your studio group):

Getting Started with the Arduino Development Environment
Many of you will be familiar with the Eclipse development environment. You know how to check out a
local copy of your workspace from a repository, how to author programs in Java, and execute those
programs on the computer that is running Eclipse. Here, you are being introduced to another
development environment, targeting the Arduino platform.

The Arduino is a (very) small computer that has dramatically fewer capabilities than the desktop or
laptop machines that you have used in the past to run Java programs. For example, it doesn’t have a
keyboard, it doesn’t have a screen, its processor is over 100 times slower, and you might even be
wondering, “What is the point?” The point is that small computers like the Arduino are priced relative
to their capabilities. Want a computer for under $10? If so, the Arduino is a great choice! Over the
course of the semester, we’ll discover all that the Arduino can do, even though it starts out as humbly as
it does.

Because of the limited input and output capabilities of the Arduino, we will use a desktop or laptop
computer to assist in writing and executing programs on the Arduino. The Arduino development
environment actually runs on your desktop machine. As with Eclipse, you have a local workspace on the
desktop machine, you checkout the workspace from a repository, and author programs for the Arduino.
Not in Java, though, the language we will use for most of our Arduino development is C.

The other distinction between Java development in Eclipse and the Arduino development environment
is that to execute a program on the Arduino processor, the program to be executed must be loaded into
the Arduino’s memory so the processor on the board can execute it. This is accomplished via the use of
a USB connection (which both supports two-way communication between the Arduino and the desktop
machine as well as provides power to the Arduino board).

http://cse.wustl.edu/~roger/cse102/info/studioheader.html
http://goo.gl/forms/6xbk2cbmpn
http://whenisgood.net/cyk8jje

2

Install Development Environment
If you wish to use your own laptop for development, the Arduino development environment can
be downloaded from http://arduino.cc/en/main/software and installed on Windows, Linux, or
Mac systems. Download and install version 1.0.6 of the development environment.

The development environment is already installed on the lab machines, so if you have difficulty
with the installation process, continue with the studio exercises below and then ask for help
with the software installation.

Authoring Programs
Start up the Arduino development software and you will be presented with a text editor
window:

For all of your software development on the Arduino platform, do not hesitate to access the
Language Reference documentation on-line.

Copy and paste the following code into the text editor:

http://arduino.cc/en/main/software
http://arduino.cc/en/Reference/HomePage

3

/* helloworld
 */

void setup() {
 Serial.begin(9600);
 Serial.println("Hello World!");
}

void loop() {
}

Save the program (File -> Save As …) under the name helloworld.

Compiling and Executing Programs
Using the Upload button, compile helloworld and send it to the Arduino for execution.

The window that displays the output can be opened using the Serial Monitor button. You might
need to set which COM port via Tools -> Serial Port before this will work. Which COM
port (e.g., COM3, COM4) will depend on which USB port you are using on the PC (it is unlikely to
be COM1 or COM2).

4

Authoring a Program
Using the delay() library function, author a heartbeat program (named heartbeat1) that, once per
second, prints

 <n> sec elapsed time

Where <n> is the number of seconds that has elapsed since the program was reset.

Execute your program on the Arduino and verify (via an external time reference) that it is operating at
approximately the correct rate.

Also, author a program in Java, to execute on your desktop computer, which does the same thing. It
should print a message to the console once per second. Use the Thread.sleep() method to
measure the passage of time, as described in class.

Startup both programs together, and observe how long it takes for them to start drifting in time relative
to one another. Add text output to heartbeat1 that displays the return value from the millis()
function. What additional does that tell you about the accuracy of the time using delay()?

Digital Outputs
So far, we have exclusively used the desktop computer’s display to serve as the output device for our
programs that execute on the Arduino processor. The next task is to add a digital output capability to
the Arduino itself. You will start by building one LED output, and then later extend this to 6 LED outputs.

Construct the circuit below, connecting a 330Ω resister in series with a red LED from connector D13 to
ground (GND). You can recognize the resistor’s value as 330Ω by the color code on the part. The first
two colors are significant digits, and the 3rd color is the value multiplier (thing scientific notation where
the decimal point follows the two significant digits. Orange is a 3 when encoding significant digits, so
the first two digits are 33. Brown is 101 when encoding the multiplier, so we multiply the 33 by 10 to get
330. (Note: Brown encodes a 1, the exponent of the multiplier.)

33 × 101 = 330Ω

Orange Orange Brown

The table of values is as follows:

0 1 2 3 4 5 6 7 8 9
black brown red orange yellow green blue violet grey white

http://arduino.cc/en/reference/delay
http://arduino.cc/en/Reference/Millis
http://arduino.cc/en/reference/delay
http://en.wikipedia.org/wiki/Electronic_color_code#Resistor_color-coding

5

Program Heartbeat1
Once you have constructed your digital output, let’s alter your heartbeat program to output
directly to the LED. Once per second, using the digitalWrite() function, toggle the output
to the LED (either LOW to HIGH or HIGH to LOW). This should give you a blinking LED that is
flashing at 0.5 Hz (one on-off cycle every 2 seconds). It is fine to have the program continue to
send the “elapsed time” message to the desktop computer’s screen.

Show your running heartbeat1 to an instructor or TA.

Program Heartbeat2
Copy the program heartbeat1 into a new file named heartbeat2. Next, alter the program
heartbeat2 so that it flashes at 1 Hz (one on-off cycle every second) and the amount of time
that the LED is on is specified via

 const int LEDOnTime_ms = <n>;

where the on-time <n> is specified in milliseconds. Instead of using the delay() function, this
time use the millis() function to access the free-running timer. Play with the on-time
parameter until the LED flash is a reasonable length (i.e., it is easy to see, but doesn’t stay on too
long). Again, run your PC-based heartbeat and Arduino heartbeat2 together, and see how
long it takes for them to start drifting in time relative to one another.

Show your running heartbeat2 to an instructor or TA.

330Ω

http://arduino.cc/en/Reference/digitalWrite
http://arduino.cc/en/reference/delay
http://arduino.cc/en/Reference/Millis

6

Analog Output
Read the tutorial on pulse width modulation (PWM). Open the program Fade

 File->Examples->01.Basics->Fade

and move your red LED output circuit to pin 9 (or add a second red LED output circuit at pin 9).
Don’t forget to include the resistor!

Alter the delay() call at the bottom of the program (or use some other program alteration) so
that the analog output value stays stable for a long enough time so that you can observe the
output voltage on the oscilloscope for several different analog output values. Ask an instructor
or TA how to operate the oscilloscope if you are not yet familiar with its use.

Metronome
For the last program using a single LED output, author a metronome application (call it
metronome). Continue to use the LEDOnTime_ms parameter to specify the amount of time
that the LED is on each time it flashes. Add a new parameter

 const int metronomeRate_bpm = ;

which specifies the rate of the metronome (in beats per minute). Again, use millis() for
timing purposes.

When metronomeRate_bpm is 60, program metronome will work just like program
heartbeat2. Explore how fast your metronome can work. What is limiting the effective rate
as it gets higher and higher?

Run your metronome for a while to see how accurate it is by comparing it to an alternative time
reference (e.g., the clock/stopwatch on your phone). You might want to use an output similar
to the “elapsed time” from the heartbeat1 program for this purpose. Does the metronome
time drift appreciably? Can you quantify the drift?

Show your running metronome to an instructor or TA.

Stoplight Controller
Next, build 6 LED digital outputs: 2 red, 2 yellow, and 2 green. Arrange them physically such
that they resemble the indicators for a stoplight (i.e., 1 red 1 yellow and 1 green LED represent a
street running north/south and the other 3 LEDs represent a street running east/west.

Design a program called stoplight which controls your stoplight. The timing should be
specified using an appropriate set of parameters which you set via const int statements in
C. What are the states of the intersection that it is appropriate for the stoplight controller to
retain?

Show your running stoplight to an instructor or TA.

http://arduino.cc/en/Tutorial/PWM
http://arduino.cc/en/reference/delay
http://arduino.cc/en/Reference/Millis

7

Submitting Your Work
When you have finished your studio exercises, return the Arduino hardware to the instructor or TA and
make sure they record your attendance and participation.

	Introduction to Studio
	Tell Us About Yourself
	Getting Started with the Arduino Development Environment
	Install Development Environment
	Authoring Programs
	Compiling and Executing Programs

	Authoring a Program
	Digital Outputs
	Program Heartbeat1
	Program Heartbeat2
	Analog Output
	Metronome
	Stoplight Controller

	Submitting Your Work

