Detecting Mental Disorders with Wearables: A Large Cohort Study

Ruixuan Dai1, Thomas Kannampallil1,2, Seunghwan Kim2, Vera Thornton3, Laura Bierut3, Chenyang Lu1,4,5

1Department of Computer Science & Engineering
2Department of Anesthesiology
3Department of Psychiatry
4Department of Medicine
5AIM Institute – AI and IoT for Medicine
Depressive and anxiety disorders are prevalent.
- ~3.8% of the population (i.e., 280 million) experience depression (WHO).

Over 50% of patients are not recognized or treated.

Clinical visit is time-consuming and expensive.
- Hindering timely diagnosis and intervention

Detect mental disorders with wearables devices?
- Unobtrusive, multi-modal sensing
- Activities, heart rate, and sleep are associated with mental health
- More than 500 millions sold in 2021 globally
Need: Large and Diverse Cohorts

- Wearable mental health studies: **small** cohorts with **limited diversity**
 - 18 pregnant women [UbiComp’19]
 - 48-652 college students [UbiComp’14, UbiComp’19, J. Biomed. Inform. ‘22]
 - 1,002 healthy subjects [NPJ Digit. Med. ‘18]

- Machine learning approaches
 - Shallow machine learning models
 - Rely on ad hoc feature engineering
 - Limited predictive power
 - Deep models with questionable generality

- **Small datasets limit the rigor and generality of results!**
Our Work

- A large and diverse dataset
 - 8,996 participants of the “All of Us” program
 - Longitudinal wearable data and mental health diagnosis

- **WearNet**: deep model for detecting mental disorders with wearables

Source: All of Us program
Outcomes and Inputs

➢ Mental disorders
 - 20 depressive/anxiety disorder diagnoses identified by clinical experts
 - Positive label: a participant with any of the diagnoses

➢ Input features
 - Wearable data in a 60-day window
 • 10 types of daily summaries from Fitbit cloud
 • Derived based on step and heart rate time series
 • e.g., total steps, average heart rate, sedentary minutes
 - Static data from electrical health records and surveys
 • Age, race, ethnicity, gender, education, smoke history, alcohol history
Large and Diverse Cohort

- **8,996** participants including **1,247** with mental disorders

Age: mean 48.6 (s.d. 15.9)

Education Levels:
- Level 1: below high school
- Level 2: twelfth or GED
- Level 3: College One to Three
- Level 4: College graduate or above
WearNet: Deep Model for Detecting Mental Disorders

- Combining transformer encoder and convolutional neural network

- Transformer encoder (multi-head self-attention)
 - Identifies patterns across multiple timestamps

- Convolutional neural network (1-d)
 - Integrates neighborhood patterns

- Global max pooling
 - Identifies one global pattern for robustness

- Integrate wearable and static data at the top
 - Captures the underlying characteristics
Detection Performance

<table>
<thead>
<tr>
<th>Category</th>
<th>Model</th>
<th>AUROC</th>
<th>AUPRC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shallow Models</td>
<td>LR</td>
<td>0.701(0.000)</td>
<td>0.351(0.000)</td>
</tr>
<tr>
<td></td>
<td>SVM</td>
<td>0.592(0.000)</td>
<td>0.290(0.000)</td>
</tr>
<tr>
<td></td>
<td>RF</td>
<td>0.661(0.005)</td>
<td>0.349(0.007)</td>
</tr>
<tr>
<td></td>
<td>GBDT</td>
<td>0.685(0.001)</td>
<td>0.365(0.000)</td>
</tr>
<tr>
<td>Deep Models</td>
<td>bi-LSTM</td>
<td>0.702(0.015)</td>
<td>0.464(0.011)</td>
</tr>
<tr>
<td></td>
<td>BRITS</td>
<td>0.693(0.012)</td>
<td>0.445(0.011)</td>
</tr>
<tr>
<td></td>
<td>CrossNet</td>
<td>0.682(0.021)</td>
<td>0.429(0.014)</td>
</tr>
<tr>
<td></td>
<td>TCN</td>
<td>0.629(0.021)</td>
<td>0.235(0.024)</td>
</tr>
<tr>
<td></td>
<td>Informer</td>
<td>0.705(0.008)</td>
<td>0.428(0.011)</td>
</tr>
<tr>
<td></td>
<td>WearNet</td>
<td>0.717(0.009)</td>
<td>0.487(0.008)</td>
</tr>
</tbody>
</table>

- AUROC: Area Under the Receiver Operating Characteristic Curve
- AUPRC: Area Under the Precision-Recall Curve

- **Shallow models** with feature engineering are less predictive.
- **RNN and TCN models** underperformed Transformer models.
- **WearNet** achieved the best predictive performance.
Ablation Study

- Integrating neighborhood patterns with convolutional layer helped.
- Wearable time-series had larger impacts than static characteristics.
- Wearable data and static characteristics are complementary to each other.

<table>
<thead>
<tr>
<th>Model</th>
<th>AUROC</th>
<th>AUPRC</th>
</tr>
</thead>
<tbody>
<tr>
<td>WearNet</td>
<td>0.717(0.009)</td>
<td>0.487(0.008)</td>
</tr>
<tr>
<td>WearNet(without convolutional layer)</td>
<td>0.673(0.008)</td>
<td>0.251(0.008)</td>
</tr>
<tr>
<td>WearNet(without static characteristics)</td>
<td>0.702(0.007)</td>
<td>0.456(0.007)</td>
</tr>
<tr>
<td>WearNet(without wearable data)*</td>
<td>0.650(0.003)</td>
<td>0.222(0.003)</td>
</tr>
</tbody>
</table>

*The model reduces to a single-layer perceptron if we drop components for wearable data
Model Explanation

- Assign importance scores to features by approximating the integral of gradients

- **Total step** is the most important wearable feature.
- **Women** and **frequent smokers** are more likely to be diagnosed.

Matching the literature
Conclusion

- Mental disorders are **prevalent** but significantly **underdiagnosed**.

- A **large** and **diverse** cohort with 8,996 participants from All of Us.

- **WearNet**: a deep model for detecting mental disorders with wearables.

- An **unobtrusive** approach to detect mental disorders in the community.