Artificial Intelligence and Internet of Medical Things for Healthcare

Chenyang Lu
Fullgraf Professor
Department of Computer Science & Engineering
https://www.cse.wustl.edu/~lu/
AI for Healthcare

- Data-driven tools for healthcare
 - Predict clinical outcomes
 - Predict treatment effect
 - Discover risk factors associated with the outcomes
 - Support clinical decisions to improve outcome

- Extract knowledge from diverse data

Electronic Health Record (EHR)
- Collected in hospitals
- Complex and high-dimensional data

Internet of Things (IoT)
- Continuous monitoring outside hospitals
- Noisy and lossy data
Bringing the Gap between AI and Healthcare

- AI in healthcare
 - Apply off-the-shelf AI to healthcare
 - Limitations in face of hard clinical problems

- AI in computer science
 - New techniques are developed and published at an explosive rate
 - Largely ignored and rarely applied to healthcare

- AI + Medicine
 - Tackle hard and significant healthcare problems with advanced AI
Wearables

- Commonly available: step, heart rate, sleep stages
- More sensing modalities
 - Oxygen saturation (SpO2)
 - Skin temperature
 - Breathing rate
 - Heart rate variability
 - ECG (AFib)
 - Stress
- **500+ million** wearables sold in 2021

Unprecedented monitoring capability outside hospitals!
Internet of Medical Things

- **Wearables:** wristband, smartwatch, ring...
 - Long-term, non-obtrusive monitoring

- **Connectivity:** Bluetooth, WiFi, cellular
 - Real-time monitoring and intervention

- **Cloud:** computing and storage
 - Scalable to large population

- **Analytics:** machine learning
 - Predict outcomes and support intervention
Wearable Data → Clinical Outcomes

- **Reliable** prediction of clinical outcomes
 - Wearable data are **fine-grained, noisy, lossy**

- **Personalized** prediction of treatment response
 - Support clinical decisions on **intervention**

- **Scaling** predictive models
 - Small cohorts: **robust** models with limited data
 - Large population: exploit **deep** learning models
Predicting Pancreatic Surgery Outcome

- Pancreatic cancer has a 5-year survival rate less than 5%.

- Surgery is the only cure but is commonly followed by complications.

- Predict postoperative complications before surgery
 - **Decision support**: suitability for surgery
 - **Intervention**: pre-habilitation

Joint work with Chet Hammill (Surgery), Jingwen Zhang, Dingwen Li, Ruixuan Dai (CSE)
Predict Postoperative Complications

- **Goal:** predict *postoperative* complications with *preoperative* data
 - Wearable data collected by Fitbit (time series)
 - Patient clinical characteristics from EHR (static data)

- **Prospective study:** 61 patients undergoing pancreatic surgery
 - 25 (40.98%) experienced complications

- **Machine learning approach**
 - Small cohort → avoid complex (deep) models
 - Extract features from wearable time series → shallow machine learning models
 - Integrate wearable data and patient clinical characteristics
Fitbit Data

- Wristband provides time series data: step count, heart rate, and sleep stage

Example of step and heart rate data collected by Fitbit

Fine-grained, lossy, noisy time-series
Robust Feature Engineering Pipeline

Imputation for short missing segments

Heart rate Data

Step Data

Sleep stages

Imputed values

Daily feature extraction

D: # of daily features
N: # of days

High-level feature extraction

Clinical features

Inputs to predictive model

Raw Time Series → Daily Features

- **Statistical features**
 - max, sum, skewness, kurtosis, energy, entropy, inertia...

- **Semantic features**
 - Activity: daily steps, sedentary/active time, active/sedentary bout counts...
 - Sleep: awake counts, sleep efficiency, time of sleep, time before falling asleep...

- **Standardization**: account for missing data

\[
\text{Daily sedentary time} \rightarrow \frac{\text{Daily sedentary time}}{\# \text{ Data samples}}
\]

Duration of wearing the device
Daily Features \rightarrow High-level Features

- Singular Spectrum Analysis (SSA)
 - denoise time series of daily features.
Daily Features → High-level Features

- Singular Spectrum Analysis (SSA)
 - **denoise** time series of daily features.

![Trend Extraction with Complete Data (30 data samples)](image)
Singular Spectrum Analysis (SSA)

- **denoise** time series of daily features.
- **robust** to missing daily features.
Singular Spectrum Analysis (SSA)
- denoise time series of daily features.
- robust to missing daily features.

Trend Extraction with Complete Data (30 data samples)
Trend Extraction with Missing Components (20 data samples)

- mean
- standard deviation
- slope
Robust Prediction of Surgical Complications

- **Machine learning models outperform standard surgical risk scores.**
 - x2 AUPRC
 - x3 sensitivity at the same specificity

<table>
<thead>
<tr>
<th>Data Source</th>
<th>AUROC</th>
<th>AUPRC</th>
<th>Sensitivity</th>
<th>Specificity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Random weighted classifier</td>
<td>0.5097 (0.0585)</td>
<td>0.4322 (0.0469)</td>
<td>0.1520 (0.0854)</td>
<td>0.8583 (0.0504)</td>
</tr>
<tr>
<td>NSQIP with Clinical Characteristics</td>
<td>0.6114 (0.0000)</td>
<td>0.4075 (0.0000)</td>
<td>0.2800 (0.0000)</td>
<td>0.8571 (0.0000)</td>
</tr>
<tr>
<td>ML with Clinical Characteristics</td>
<td>0.7632 (0.0085)</td>
<td>0.7374 (0.0206)</td>
<td>0.5800 (0.0699)</td>
<td>0.8583 (0.0083)</td>
</tr>
<tr>
<td>Wearable Data</td>
<td>0.7326 (0.0074)</td>
<td>0.7192 (0.0154)</td>
<td>0.5480 (0.0440)</td>
<td>0.8583 (0.0083)</td>
</tr>
<tr>
<td>Clinical Characteristics + Wearable Data</td>
<td>0.8802 (0.0050)</td>
<td>0.8871 (0.0087)</td>
<td>0.8320 (0.0160)</td>
<td>0.8583 (0.0083)</td>
</tr>
</tbody>
</table>

- NSQIP: American College of Surgeons National Surgical Quality Improvement Program
- AUROC: Area Under the Receiver Operating Characteristic Curve
- AUPRC: Area Under the Precision-Recall Curve
Robust Prediction of Surgical Complications

- Machine learning models outperform traditional surgical risk scores.
- **Wearable data + clinical characteristics** → best predictive performance

<table>
<thead>
<tr>
<th>Data Source</th>
<th>AUROC</th>
<th>AUPRC</th>
<th>Sensitivity</th>
<th>Specificity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Random weighted classifier</td>
<td>0.5097 (0.0585)</td>
<td>0.4322 (0.0469)</td>
<td>0.1520 (0.0854)</td>
<td>0.8583 (0.0504)</td>
</tr>
<tr>
<td>NSQIP with Clinical Characteristics</td>
<td>0.6114 (0.0000)</td>
<td>0.4075 (0.0000)</td>
<td>0.2800 (0.0000)</td>
<td>0.8571 (0.0000)</td>
</tr>
<tr>
<td>ML with Clinical Characteristics</td>
<td>0.7632 (0.0085)</td>
<td>0.7374 (0.0206)</td>
<td>0.5800 (0.0699)</td>
<td>0.8583 (0.0083)</td>
</tr>
<tr>
<td>Wearable Data</td>
<td>0.7326 (0.0074)</td>
<td>0.7192 (0.0154)</td>
<td>0.5480 (0.0440)</td>
<td>0.8583 (0.0083)</td>
</tr>
<tr>
<td>Clinical Characteristics + Wearable Data</td>
<td>0.8802 (0.0050)</td>
<td>0.8871 (0.0087)</td>
<td>0.8320 (0.0160)</td>
<td>0.8583 (0.0083)</td>
</tr>
</tbody>
</table>

- **NSQIP**: American College of Surgeons National Surgical Quality Improvement Program
- **AUROC**: Area Under the Receiver Operating Characteristic Curve
- **AUPRC**: Area Under the Precision-Recall Curve
Personalized Prediction of Treatment Outcome

- Statistical analysis → population-level effectiveness of treatment

- **Personalized** prediction → precision medicine

- **Machine learning from RCT data**
 - Clinical data (baseline): age, anxiety score, PTSD...
 - Fitbit data (2 months): heart rate, sleep
 - Depression outcome (at 6 month)

Randomized Controlled Trial of Depression Therapy

- **Group randomization**
 - Random split (71 : 35)
 - 106 patients

- **6-month trial period**
 - **Intervention**
 - Behavior therapy
 - **Control**
 - No treatment

- **Baseline clinical measurements**
- **Continuous wearable data**

- Statistical analysis → **population-level** effectiveness of treatment

- **Personalized** prediction → **precision** medicine

- **Machine learning from RCT data**
 - Clinical data (baseline): age, anxiety score, PTSD...
 - Fitbit data (2 months): heart rate, sleep
 - Depression outcome (at 6 month)

Joint work with Thomas Kannampallil (Informatics), Jun Ma (Medicine, UIC), Ruixuan Dai, Jingwen Zhang, (CSE)
Predicting Personalized Treatment Response

- **Group-specific models**
 - Intervention group
 - Risk model
 - Treatment-specific model
 - Control group

- **Multi-task learning (MTL) with a unified model**

Detect Mental Disorders in the Community

- Mental disorders are prevalent
 - Over 50% of patients are not recognized or treated.

- Detect mental disorder (depression & anxiety) using
 - **wearable data**: daily features
 - **static data**: age, race, ethnicity, gender, education, smoke, alcohol

- All of Us: 8,996 participants with wearables (1,247 with mental disorders)

- **WearNet**: end-to-end deep model learning directly from raw daily features
 - No need for feature engineering

Joint work with Thomas Kannampallil (Informatics), Laura Jean Bierut (Psychiatry), Ruixuan Dai (CSE)
IoMT for Precision Medicine

- **Reliable** prediction of clinical outcomes
 - Wearable data → clinical outcomes

- **Personalized** prediction of treatment response
 - RCT data → personalized intervention

- **Scaling** predictive models
 - Small patient cohorts → robust feature engineering
 - Large population → deep learning models

Unleash the power of wearables for healthcare!
High Dimensionality of EHR Data

- High dimensionality
 - BJC perioperative data: 500+ variables
 - National COVID Cohort Collaborative: >10k measurement features
 - Complex correlations among variables

- Missingness: only a subset of variables are collected for each patient

- Lead to “brittle” models suffering performance deterioration and instability in the real world.
Clinical Variational Autoencoder (cVAE)

- Learn implicit, nonlinear relationship between input features
- High-dimensional input \rightarrow low-dimensional representation
- Prediction guided \rightarrow improve predictive performance
- Disentangled \rightarrow retain interpretability

Joint work with York Jiao, Thomas Kannampallil, Bradley Fritz, Christopher King, Joanna Abraham, Michael Avidan (Anesthesiology), Bing Xue (CSE)
Predicting Postoperative Delirium

- BJC perioperative data: 12,904 patients
- Lower dimensionality: \(562 \rightarrow 10\)
- **Better** predictive performance
- No need for a separate predictor

<table>
<thead>
<tr>
<th>Transformation Method ((d=10))</th>
<th>Direct Prediction</th>
<th>LR</th>
<th>XGBoost</th>
<th>SVM</th>
<th>DNN</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ROC AUC</td>
<td>Average Precision</td>
<td>ROC AUC</td>
<td>Average Precision</td>
<td>ROC AUC</td>
</tr>
<tr>
<td>PCA</td>
<td>-</td>
<td>-</td>
<td>.717 (.009)</td>
<td>.739 (.015)</td>
<td>.706 (.013)</td>
</tr>
<tr>
<td>ICA</td>
<td>-</td>
<td>-</td>
<td>.747 (.009)</td>
<td>.769 (.012)</td>
<td>.672 (.007)</td>
</tr>
<tr>
<td>GMM</td>
<td>.720 (.007)</td>
<td>.732 (.010)</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>AE</td>
<td>-</td>
<td>-</td>
<td>.643 (.007)</td>
<td>.657 (.015)</td>
<td>.641 (.009)</td>
</tr>
<tr>
<td>VAE</td>
<td>-</td>
<td>-</td>
<td>.647 (.007)</td>
<td>.667 (.009)</td>
<td>.650 (.010)</td>
</tr>
<tr>
<td>pi-VAE</td>
<td>-</td>
<td>-</td>
<td>.690 (.014)</td>
<td>.714 (.018)</td>
<td>.667 (.011)</td>
</tr>
<tr>
<td>cVAE-P</td>
<td>-</td>
<td>-</td>
<td>.656 (.010)</td>
<td>.672 (.007)</td>
<td>.655 (.011)</td>
</tr>
<tr>
<td>cVAE-D</td>
<td>.760 (.010)</td>
<td>.776 (.015)</td>
<td>.760 (.010)</td>
<td>.778 (.015)</td>
<td>.758 (.010)</td>
</tr>
<tr>
<td>cVAE</td>
<td>.776 (.009)</td>
<td>.794 (.015)</td>
<td>.773 (.010)</td>
<td>.790 (.017)</td>
<td>.774 (.009)</td>
</tr>
<tr>
<td>Raw Data ((d=562))</td>
<td>-</td>
<td>-</td>
<td>.758 (.009)</td>
<td>.780 (.015)</td>
<td>.737 (.010)</td>
</tr>
</tbody>
</table>

Heterogeneity of EHR Data

- Early warning system: predict clinical deterioration of cancer patients

- Inpatient data from EHR
 - 128 static variables
 - 41 time-series variables

- Static and time series variables
 - make complementary contributions to prediction of clinical deterioration
 - have cross-modal correlation

Joint work with Patrick Lyons, Marin Kollef, Brian Gage (Medicine), Dingewen Li (CSE)
CrossNet

- **Unified** deep recurrent model for integrating static and time-series inputs
- **Multi-modal fusion**: integrating heterogeneous input data
- **Cross-modal imputation**: exploiting cross-modal correlation

CrossNet detects 10x deterioration events than MEWS while generating the same number of false alarms.

<table>
<thead>
<tr>
<th>Model</th>
<th>Alarm rate control</th>
<th>False alarm control</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Sensitivity</td>
<td>Specificity</td>
</tr>
<tr>
<td>MEWS</td>
<td>0.3358(0.0115)</td>
<td>0.8257(0.0142)</td>
</tr>
<tr>
<td>C. BRITS</td>
<td>0.3899(0.0134)</td>
<td>0.9394(0.0097)</td>
</tr>
<tr>
<td>S. BRITS</td>
<td>0.3891(0.0122)</td>
<td>0.9396(0.0105)</td>
</tr>
<tr>
<td>CrossNet</td>
<td>0.4218(0.0130)</td>
<td>0.9486(0.0093)</td>
</tr>
</tbody>
</table>

MEWS: Modified Early Warning Scores
AI and IoT for Medicine (AIM)

- Healthcare should benefit from the vast amount of data available.
- Advanced AI allows us to extract knowledge from complex data.
- Collaboration between healthcare and AI/IoT researchers is essential.

Electronic Health Record (EHR)
- Collected in hospitals
- Complex and high-dimensional data

Internet of Things (IoT)
- Continuous monitoring outside hospitals
- Noisy and lossy data
Proposal: The AIM Institute

- Solve significant healthcare problems with advanced AI and IoT
 - Hard clinical problems call for advanced AI and IoT
 - Advanced AI and IoT bring significant value to healthcare

- Hub for interdisciplinary collaboration on AIM
 - Connect AI/IoT faculty and medical researchers

- Incubator for interdisciplinary research of AIM
 - Fund and develop pilot studies combining medicine and advanced AI/IoT

- Establish WashU as a world leader in AIM