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Abstract—Recent years have witnessed the convergence of
two important trends in real-time systems: growing computa-
tional demand of applications and the adoption of processors
with more cores. As real-time applications now need to exploit
parallelism to meet their real-time requirements, they face a
new challenge of scaling up computations on a large number
of cores. Randomized work stealing has been adopted as
a highly scalable scheduling approach for general-purpose
computing. In work stealing, each core steals work from a
randomly chosen core in a decentralized manner. Compared
to centralized greedy schedulers, work stealing may seem
unsuitable for real-time computing due to the non-predictable
nature of random stealing. Surprisingly, our experiments with
benchmark programs found that random work stealing (in Cilk
Plus) delivers tighter distributions in task execution times than
a centralized greedy scheduler (in GNU OpenMP).

To support scalable soft real-time computing, we develop
Real-Time Work-Stealing platform (RTWS), a real-time exten-
sion to the widely used Cilk Plus concurrency platform. RTWS
employs federated scheduling to allocate cores to multiple
parallel real-time tasks offline, while leveraging the work
stealing scheduler to schedule each task on its dedicated cores
online. RTWS supports parallel programs written in Cilk Plus
and requires only task parameters that can be readily measured
using existing Cilk Plus tools. Experimental results show that
RTWS outperforms Real-Time OpenMP in term of deadline
miss ratio, relative response time and resource efficiency on a
32-core system.

I. INTRODUCTION

Parallel real-time scheduling has emerged as a promising
scheduling paradigm for computationally intensive real-time
applications on multicore systems. Unlike in traditional
multiprocessor scheduling with only inter-task parallelism
(where each sequential task can only utilize one core at
a time), in parallel scheduling each task has intra-task
parallelism and can run on multiple cores at the same
time. As today’s real-time applications are trying to provide
increasingly complex functionalities and hence have higher
computational demands, they ask for larger scale systems in
order to provide the same real-time performance. For exam-
ple, real-time hybrid structural testing for a large building
may require executing complex structural models over many
cores at the same frequency as the physical structure [1].

Despite recent results in parallel real-time scheduling,
however, we still face significant challenges in deploying
large-scale real-time applications on microprocessors with
increasing numbers of cores. In order to guarantee desired

parallel execution of a task to meet its deadline, theoretic
analysis often assumes that it is executed by a greedy (work
conserving) scheduler, which requires a centralized data
structure for scheduling. On the other hand, for general-
purpose parallel job scheduling it has been known that cen-
tralized scheduling approaches suffer considerable schedul-
ing overhead and performance bottleneck as the number
of cores increases. In contrast, a randomized work stealing
approach is widely used in many parallel runtime systems,
such as Cilk, Cilk Plus, TBB, X10, and TPL [2]–[6]. In work
stealing, each core steals work from a randomly chosen core
in a decentralized manner, thereby avoiding the overhead
and bottleneck of centralized scheduling. However, unlike a
centralized scheduler, due to the randomized and distributed
scheduling decision making strategy, work stealing may not
be suitable for hard real-time tasks.

In this paper, we explore using randomized work stealing
to support large-scale soft real-time applications that have
timing constraints but do not require hard guarantees. De-
spite the unpredictable nature of work stealing, our exper-
iments with benchmark programs found that work stealing
(in Cilk Plus) delivers smaller maximum response times than
a centralized greedy scheduler (in GNU OpenMP) while
exhibiting small variance. To leverage randomized work
stealing for scalable real-time computing, we present Real-
Time Work Stealing (RTWS), a real-time extension to the
widely used Cilk Plus concurrency platform. RTWS employs
federated scheduling to decide static core assignment to
parallel real-time tasks offline, while using the work stealing
scheduler to execute each task on its dedicated cores online.
RTWS supports parallel programs written in Cilk Plus
with only minimal modifications, namely a single level of
indirection of the program’s entry point. Furthermore, RTWS
requires only task parameters that can be readily measured
using existing Cilk Plus tools.

This paper presents the following contributions:
1) Empirical study of the performance and variability of

parallel tasks under randomized work stealing vs. cen-
tralized greedy scheduler.

2) Design and implementation of RTWS, which schedules
multiple parallel real-time tasks through the integration
of federating scheduling and work stealing.

3) Theoretical analysis to adapt federated scheduling to
incorporate work stealing overhead.



4) Evaluation of RTWS with benchmark applications on a
32-core testbed that demonstrates the significant advan-
tages of RTWS in terms of deadline miss ratio, relative
response time and required resource capacity when com-
paring with the integration of federated scheduling and
centralized scheduler.

II. TASK MODEL

We first describe the types of parallel tasks considered
in this paper. Specifically, we are interested in parallel
programs that can be generated using parallel languages and
libraries, such as Cilk [2], Intel Cilk Plus [3], OpenMP [7],
Microsoft’s Task Parallel Library [6], IBM X10 [5], etc.
In these languages, the programmer expresses algorithmic
parallelism, through linguistic constructs such as “spawn”
and “sync,” “fork” and “join,” or parallel-for loops.

These programs can be modeled using directed acyclic
graphs (DAGs). In a DAG task, computational work is
represented by nodes (vertices), while dependencies between
sub-computations are represented by edges. Each task is
characterized using two parameters: work and critical-path
length. The work Ci of a DAG task τi is defined as the
total execution time of all the nodes in a DAG, which is
the task execution time on 1 core. The critical-path length
Li is defined as the sum of the execution times of the
nodes that are in the longest path of the DAG, which is
also the task execution time on an infinite number of cores.
Figure 1 shows an example of DAG task with the critical-
path annotated following the dashed line.
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Figure 1: A directed acyclic graph (DAG) task τ1 with six nodes.
The execution time of each node is annotated in the center of
the node. The total work C1 is the sum of the execution times
of all nodes, which is 12. The critical-path, i.e., the longest
path in the DAG, is annotated using the dashed line. Hence,
the critical-path length L1 is 10.

In general, parallel programs can have arbitrary DAG
structures. In real-time systems, researchers have given
special consideration to a subset of DAG tasks, where the
programs only use the parallel-for construct and do not nest
these parallel-for loops. This restriction generates a special
type of DAG, which we call synchronous DAG. Each
parallel for-loop is represented by a segment — a segment
contains a set of nodes (iterations) that can be executed
in parallel with each other. The end of each segment is
a synchronization point and the next segment can begin
only after all iterations of the current segment complete.

A sequential region of code is simply a segment with 1
iteration. Each synchronous task is a sequence of such
segments. Synchronous tasks are also called as Fork/Join
tasks in some publications. Figure 2 shows an example of
a synchronous task with five segments; two of them are
parallel segments, and the remaining three are sequential
segments. This synchronous structure can be generated from
a simple program shown in Figure 3, where parallel for
constructs can be Cilk Plus’ cilk for constructs or OpenMP’s
omp for directives.
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Figure 2: A synchronous task with two parallel-for loops. The
execution time of each node is annotated in the center of the
node. The second segment contains 20 nodes.

main()
{

// Do some sequential work
foo();
// Do the first parallel segment
parallel_for (i = 1; i <= 20; i++) {

first_func();
}
// Other sequential work
bar();
// Do the second parallel segment
parallel_for (i = 1; i <= 3; i++) {

second_func();
}
// The last sequential work
baz();

}

Figure 3: Example of a synchronous program.

Formally, a task set τ consists of n parallel tasks τ =
{τ1, τ2, ..., τn}, where each job of a task τi is a DAG
program or a synchronous program — in principle, each
job may have different internal structure. Each task τi has a
period Pi and deadline Di. We consider sporadic task sets
with implicit deadlines, i.e. Pi = Di. The utilization of a
task τi is calculated as ui = Ci/Pi, and the total utilization
of the entire task set is

∑
i ui. We want to schedule the task

set τ on an m-core machine.
In this paper, we consider soft real-time tasks where a

task is allowed to miss a few deadlines occasionally. Using
the same resource capacity, a scheduling algorithm S has
better performance if it schedules the same task set with a
smaller deadline miss ratio, which is defined as the number
of missed deadlines over the number of released jobs of the
task set during a time interval.



III. SCHEDULING PARALLEL TASKS

Most parallel languages and libraries, including those
mentioned above, provide a runtime system that is respon-
sible for scheduling the DAG on the available cores, i.e.,
dynamically dispatch the nodes of the DAG to these cores
as the nodes become ready to execute. At a high-level, two
types of scheduling strategies are often used: centralized
scheduling and randomized work-stealing.

A. Centralized Schedulers

The system maintains a centralized data structure (such
as a queue) of ready nodes that is shared by all the cores
in a work sharing manner. There are a couple of possible
instantiations of this strategy. In push schedulers, there is a
master thread that dispatches work to other threads as they
need this work. In pull schedulers, worker threads access this
data structure themselves to grab work (ready nodes) as they
need them. For example, the scheduler in the runtime system
of GNU OpenMP is a pull scheduler, as in Figure 4(a).

Work-sharing schedulers have the nice property that they
are greedy or work-conserving — as long as there are avail-
able ready nodes, no worker idles. However, these schedulers
often have high overheads due to constant synchronizations.
In particular, in a push scheduler, the master thread can only
send work to cores one at a time. In a pull scheduler, the
centralized queue must be protected by a lock and often
incurs high overheads due to this.
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(a) A pull scheduler
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(b) A work-stealing scheduler

Figure 4: Examples of centralized scheduling and work stealing

B. Randomized Work-Stealing Schedulers

In a randomized work-stealing scheduler, there is no
centralized queue and the work dispatching is done in a
distributed manner [2]. If a job is assigned ni cores, the
runtime system creates ni worker threads for it. Each worker
thread maintains a local double-ended queue (a deque), as
shown in Figure 4(b). When a worker generates new work
(enables a ready node from the job’s DAG), it pushes the
node onto the bottom of its deque. When a worker finishes
its current node, it pops a ready node from the bottom of
its deque. If the local deque is empty, the worker thread
becomes a thief and randomly picks a victim thread among
the other workers working on the same task and tries to steal
work from the top of the victim’s deque. For example, the
third worker thread’s deque is empty in Figure 4(b), so it
randomly picks the second worker thread and steals work.

Randomized work-stealing is very efficient in practice and
the amount of scheduling and synchronization overhead is
small. In contrast to centralized schedulers where the threads
synchronize frequently, very little synchronization is needed
in work-stealing schedulers since (1) workers work off their
own deques most of the time and don’t need to communicate
with each other at all and (2) even when a worker runs out
of work and steals occur, the thief and the victim generally
look at the opposite ends of the deque and don’t conflict
unless the deque has only 1 node on it.

However, because of this randomized and distributed
characteristic, work-stealing is not strictly greedy (work
conserving). In principle, workers can spend a large amount
of time stealing, even if some other worker has a lot of
ready nodes available on its deque. On the other hand, work-
stealing provides strong probabilistic guarantee of linear
speedup (“near-greediness”) [8]. Moreover, it is much more
efficient than centralized schedulers in practice. Therefore,
variants of work stealing are the default strategies in many
parallel runtime systems such as Cilk, Cilk Plus, TBB, X10,
and TPL [2]–[6]. Thus, for soft real-time systems where
occasional deadline misses are allowed, work stealing can
be more resource efficient than a strictly greedy scheduler.

C. Specific Implementations of Centralized and Work-
Stealing Schedulers

In this paper, we compare specific implementations of
centralized and work-stealing schedulers: GNU OpenMP’s
centralized scheduler and GNU Cilk Plus’s work-stealing
scheduler. We choose these two implementations because
OpenMP and CilkPlus are two of the most widely used
parallel languages (and runtime systems) that have been
developed by industry and the open source community over
more than a decade; they are the only two parallel languages
that are supported by both GCC and ICC.

OpenMP is a programming interface standard [7] for C,
C++, and FORTRAN that allows a programmer to specify
where parallelism can be exploited, and the GNU OpenMP
runtime library in GCC is one of implementations of the
OpenMP standard. OpenMP allows programmers to express
parallelism using compiler directives. In particular, parallel
for loops are expressed by #pragma omp parallel for,
a parallel node in a DAG is expressed by #pragma omp
task and synchronization between omp tasks is expressed
by #pragma omp taskwait. While the details of scheduling
are somewhat complex, and vary between omp parallel
for loops and omp tasks, at a high level, GNU OpenMP
provides an instantiation of a centralized pull scheduler.
Available parallel work of a program is kept in a centralized
queue protected by a global lock. Whenever a worker thread
generates nodes of omp tasks or iterations in a parallel for
loop, it has to get the global lock and places these nodes in
the queue. When it finishes its current work, it again has to
grab the lock to get more work from the queue.



Cilk Plus is a language extension to C++ for parallel
programs and its runtime system schedules parallel programs
using randomized work stealing. All Cilk Plus features are
supported by GCC. Potential parallelism can be expressed
using three keywords in the Cilk Plus language: a paral-
lel node in a DAG is generated by cilk spawn and the
synchronization point is realized by cilk sync; additionally,
parallel for-loops are supported using a cilk for program-
ming construct. Note that in the underlying Cilk Plus runtime
system, cilk for is expanded into cilk spawn and cilk sync
in a divide and conquer manner. Therefore, there is no
fundamental difference between executing parallel DAGs
or synchronous tasks in Cilk Plus. The Cilk Plus runtime
system implements a version of randomized work stealing.
When a function spawns another function, the child function
is executed and the parent is placed on the bottom of the
worker’s deque. A worker always works off the bottom of
its own deque. When its deque becomes empty, it picks a
random victim and steals from the top of that victim’s deque.

IV. THE CASE FOR RANDOMIZED WORK STEALING
FOR SOFT REAL-TIME TASKS

In this section, we compare the performance of a work
stealing scheduler in GNU Cilk Plus with a centralized
scheduler in GNU OpenMP for highly scalable parallel
programs. Our goal is to answer two questions: (1) Is it
indeed the case that work stealing provides substantially
better performance than centralized scheduler for parallel
programs? Our experiments indicate that for many programs,
including both synthetic tasks and real benchmark programs,
work stealing provides much higher scalability. (2) Can work
stealing be used for real-time systems? In particular, one
might suspect that even if work stealing performs better than
centralized scheduler on average, the randomization used in
work stealing would make its performance too unpredictable
to use even in soft real-time systems. Our experiments
indicate that this is not the case — in fact, the variation
in execution time using Cilk Plus’ work-stealing scheduler
is small and is comparable to or better than the variation
seen in the deterministic centralized scheduler.

A. Scalability Comparison

We first compare the scalability of the OpenMP central-
ized scheduler with the Cilk Plus work-stealing scheduler.
To do so, we use two types of programs: (1) three synthetic
programs that are synchronous tasks; and (2) three real
benchmark programs, namely Cholesky factorization, LU
decomposition and Heat diffusion — none is synchronous
and all have complex DAG dependences (of different types).

We implemented these programs in both Cilk Plus and
OpenMP. It is important to note that the entire source code of
each program is the same, except that the parallel directives
are in either Cilk Plus or OpenMP. Both implementations
are compiled by GCC, while linked to either Cilk Plus

Synchronous Task - Type 1
No. cores OpenMP Cilk Plus Ratio

(med., max, 99th per.) (med., max, 99th per.)
1 955.13, 958.10, 956.98 948.52, 953.41, 950.94 1.00
6 173.68, 174.31, 174.18 160.77, 161.46, 161.26 0.93
12 256.63, 259.19, 258.89 81.68, 82.56, 81.93 0.32
18 342.20, 365.99, 362.99 55.42, 59.22, 58.96 0.16
24 328.52, 331.11, 329.75 41.23, 45.22, 44.78 0.14
30 311.92, 330.00, 329.00 33.66, 35.02, 34.64 0.11

Synchronous Task - Type 2
No. cores OpenMP Cilk Plus Ratio

(med., max, 99th per.) (med., max, 99th per.)
1 1243.7, 1247.2, 1246.6 1237.2, 1239.9, 1239.2 0.99
6 210.22, 210.84, 210.74 213.77, 214.30, 214.19 1.02
12 111.58, 111.94, 111.87 107.90, 108.69, 108.11 0.97
18 95.55, 95.96, 95.92 73.45, 73.82, 73.62 0.77
24 85.97, 126.00, 123.01 58.95, 74.80, 69.18 0.59
30 86.74, 119.01, 86.96 45.07, 48.27, 47.33 0.41

Synchronous Task - Type 3
No. cores OpenMP Cilk Plus Ratio

(med., max, 99th per.) (med., max, 99th per.)
1 948.42, 950.39, 949.97 902.38, 903.29, 903.18 0.95
6 156.47, 156.94, 156.77 155.77, 156.06, 156.00 0.99
12 79.03, 79.34, 79.27 78.80, 79.46, 78.97 1.00
18 53.07, 53.49, 53.28 54.05, 54.41, 54.29 1.02
24 39.99, 69.95, 40.18 40.68, 44.35, 43.62 0.63
30 32.20, 33.18, 32.39 33.40, 37.12, 34.48 1.12

Table I: Median, maximum, and 99th percentile execution times
of synchronous tasks for OpenMP and Cilk Plus implementa-
tions (in milliseconds) and the ratios of the maximum execution
times of Cilk Plus over OpenMP implementations.

or OpenMP runtime libraries. Hence, the same program
written in Cilk Plus and OpenMP has the same structure
and therefore the same theoretical work and span.

Synthetic Synchronous Tasks: The synthetic syn-
chronous tasks have different characteristics to compare the
schedulers under different circumstances:

1) Type 1 tasks have a large number of nodes per
segment, but nodes has small execution times.

2) Type 2 tasks have a moderate number of nodes per
segment and moderate work per node.

3) Type 3 tasks have a small number of nodes per
segment, but nodes have large execution times.

The number of segments for all three types of synchronous
tasks are generated from 10 to 20. For synchronous task
type 1, we generate the number of nodes for each segment
from 100, 000 to 200, 000 and the execution time per node
from 5 to 10 nanoseconds; for task type 2, the number
of nodes per segment varies from 10, 000 to 20, 000 and
the execution time of each node from 2, 000 to 4, 500
nanoseconds; for task type 3, the number of nodes for
each segment is from 1, 000 to 2, 000 and each node rans
from 20, 000 to 50, 000 nanoseconds. The total work for
synchronous tasks of different types was therefore similar.
For each synchronous task generated, we ran it on varying
numbers of cores with both Cilk Plus and OpenMP and we
ran it 1000 times for each setting.

Table I shows the median, maximum, and 99th percentile
execution times of OpenMP and Cilk Plus tasks as well as
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(a) Speedup of synchronous task type 1
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(b) Speedup of synchronous task type 2
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(c) Speedup of synchronous task type 3

Figure 5: Speedup of synchronous tasks in OpenMP and Cilk Plus implementations

the ratios of the maximum execution time of Cilk Plus over
OpenMP implementations for the three types of synchronous
tasks on varying numbers of cores. For most settings, Cilk
Plus tasks obtain smaller maximum execution times than
OpenMP tasks, as shown in the ratios. We also notice that
for type 1 tasks the execution times of the OpenMP tasks
even increase when the number of cores is high (e.g, for 18,
24, 30 cores) whereas Cilk Plus tasks keep a steady speedup.

Figure 5 shows the speedup of these synchronous tasks.
For all three types of tasks, Cilk Plus provides steady and
almost linear speedup as we scale up the number of cores.
In contrast, for synchronous task type 1 in Figure 5(a) where
the segment lengths are short and there are many nodes
in each segment, OpenMP inevitably suffers high synchro-
nization overhead due to the contention among threads that
constantly access the global work queue. This overhead is
mitigated when the number of nodes in each segment is
smaller and the segment lengths are longer, as in Fig. 5(c).
In this setting, OpenMP slightly outperforms Cilk Plus,
though Cilk Plus still has comparable speedup to OpenMP.
Figure 5(b) demonstrates the scalability of OpenMP and Cilk
Plus with parameters generated in between.

Real DAG Benchmark Programs: To compare the per-
formance between work stealing and centralized scheduler
for programs with more complex DAG structures, we use
three benchmark programs as described below.

(a) Cholesky factorization (Cholesky): Using divide and
conquer, Cholesky program performs Cholesky factorization
of a sparse symmetric positive definite matrix into the prod-
uct of a lower triangular matrix and its transpose. The work
and parallelism of Cholesky both increase when the matrix
size increases. Note that because Cholesky is parallelized
using divide and conquer method, it has lots of spawn and
sync operations, forming a complex DAG structure.

(b) LU decomposition (LU): Similar to Cholesky, LU
also performs matrix factorization, but the input matrix
does not need to be positive definite and the output upper
triangular matrix is not necessarily the transpose of the lower
triangular matrix. LU also decomposes the matrix using
divide and conquer and provides abundant parallelism.

(c) Heat diffusion (Heat): This program uses the Jacobi

Cholesky Factorization
No. cores OpenMP Cilk Plus Ratio

(med., max, 99th per.) (med., max, 99th per.)
1 32.12, 32.18, 32.17 32.31, 32.36, 32.35 1.01
6 7.39, 7.62, 7.61 5.44, 5.47, 5.47 0.72
12 3.58, 3.72, 3.71 2.79, 2.89, 2.87 0.78
18 2.36, 2.43, 2.43 1.91, 1.96, 1.95 0.81
24 1.85, 1.92, 1.92 1.48, 1.52, 1.51 0.79
30 1.56, 1.62, 1.61 1.23, 1.28, 1.28 0.79

LU Decomposition
No. cores OpenMP Cilk Plus Ratio

(med., max, 99th per.) (med., max, 99th per.)
1 16.98, 17.09, 17.07 16.76, 16.82, 16.82 0.98
6 3.53, 3.79, 3.79 2.82, 2.84, 2.83 0.75
12 1.89, 1.97, 1.97 1.44, 1.87, 1.78 0.95
18 1.27, 1.37, 1.35 0.99, 1.07, 1.06 0.78
24 0.99, 1.06, 1.05 0.76, 0.84, 0.83 0.79
30 0.82, 0.86, 0.86 0.64, 0.71, 0.69 0.82

Heat Diffusion
No. cores OpenMP Cilk Plus Ratio

(med., max, 99th per.) (med., max, 99th per.)
1 51.57, 52.04, 52.04 51.70, 52.11, 52.11 1.00
6 13.50, 13.83, 13.81 8.80, 9.28, 9.26 0.67
12 7.93, 8.41, 8.31 5.06, 5.82, 5.70 0.69
18 6.40, 6.73, 6.69 3.73, 3.96, 3.95 0.59
24 5.94, 6.10, 6.10 3.06, 4.06, 3.67 0.67
30 6.87, 7.20, 7.17 2.62, 2.73, 2.73 0.38

Table II: Median, maximum, and 99th percentile execution
times of Cholesky, LU, and Heat for OpenMP and Cilk Plus
implementations (in seconds) and the ratio of the maximum
execution times of Cilk Plus over OpenMP implementations.

iterative method to solve an approximation of a partial
differential equation that models the heat diffusion problem.
The input includes a 2-dimension grid with the numbers
of rows and columns, and the number of time steps (or
iterations) the computation is performed on that 2D grid.
Within each time step, the computation is carried out in a
divide and conquer manner.

The Cholesky program was run for a matrix of size 3000×
3000. The LU program was run for a matrix of size 2048×
2048. For both of them, the base case matrix had size of
32 × 32. The Heat program was run with a 2-dimensional
input of size 4096 × 1024 and 800 time steps. For each
setting, we ran the program 100 times.

For each program, we first compare its execution times
under work stealing and centralized scheduler on varying
numbers of cores, as shown in Table II. For all three
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(a) Cholesky with matrix size 3000× 3000
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(b) Heat with input size 4096× 1024
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(c) LU with matrix size 2048× 2048

Figure 6: Speedup of benchmark programs in OpenMP and Cilk Plus implementations

benchmarks, we notice that the execution times are tight
which means both scheduling strategies have a decent pre-
dictability. However, Cilk Plus implementations have smaller
maximum execution times which means that Cilk Plus tasks
have higher chance of finishing by their deadlines.

Figure 6 shows the speedups of these programs in the
same experiments. For matrix computation programs like
Cholesky and LU, where there is abundant parallelism,
OpenMP obtains good speedups but Cilk Plus obtaines even
better speedups. The difference is more notable in the Heat
diffusion program, where there is less parallelism to exploit.
For this program, Cilk Plus still has reasonable speedup,
while the speedup of OpenMP starts to degrade when the
number of cores is more than 21.
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Figure 7: Cholesky with input size 1000×1000 base case 4×4

We also notice that for Cholesky and LU programs, the
performances of OpenMP are quite sensitive to the base case
sizes whereas Cilk Plus performed equally well regardless of
the base case sizes. For demonstration, Figure 7 shows the
experiment results of Cholesky with a base case matrix of
size 4× 4. Notably, no speedup was observed for OpenMP
when the number of cores increases. Thus, one has to tune
the base case size for OpenMP in order to get comparable
performance with their Cilk Plus counterparts. This is again
caused by the fact that the overhead of centralized scheduler
adds up and outweighs the performance gain by running
program in parallel, when the base case is small.

B. Tightness of Randomized Work Stealing in Practice

One might expect that even though a work-stealing sched-
uler may perform well on average due to low overheads,

would not be suitable for real-time platforms due to high
variability in its execution times due to randomness. How-
ever, this intuition turns out to be inaccurate. Theoretically,
strong high probability bounds have been proven for the
execution times for work stealing [8], [9]. Our experiments
also suggest that the variation in execution time is small
in practice. In our experiments, the difference between the
mean execution time and the 99th percentile execution time
is less than 5% most of the times and the variation between
the mean and the maximum execution time is also small.

More importantly, the variation shown by work stealing is
never worse than (and is generally better than) that shown by
the deterministic scheduler used by OpenMP. This indicates
that work-stealing schedulers show promise for use in real-
time systems, especially soft real-time systems which can
tolerate some deadline misses, since they can potentially
provide much better resource utilization than centralized
schedulers for parallel tasks.

Discussion: One might wander whether a different cen-
tralized scheduler that builds on better synchronization prim-
itives can outperform Cilk Plus’s work-stealing scheduler.
Our experiments in Figure 5(a), 5(b) and 7 indicate that
the higher overhead of centralized scheduler mostly comes
from the larger number of synchronization operations on
the centralized global queue compared to lower contention
on the distributed local queues. Therefore, even if synchro-
nization primitives of the centralized scheduler is further
optimized to reduce overheads, it is still unlikely to negate
the inherent scalability advantages of randomized work-
stealing, especially with increasing number of cores and
workload complexity.

V. ADAPTATION TO FEDERATED SCHEDULING USING
WORK STEALING

As demonstrated in Section IV, a centralized greedy
scheduler incurs high overheads for parallel tasks and is less
scalable compared to a randomized work-stealing scheduler.
Therefore, when the task set allows occational deadline
misses, using randomized work stealing can be more re-
source efficient and scalable. In order to leverage work steal-
ing, while providing soft real-time performance to parallel
task sets, we adapt federated scheduling to incorporate work



stealing overhead. In this section, we first briefly introduce
federated scheduling and then present how we can adapt it
to incorporate work stealing overhead.

A. Federated Scheduling for Parallel Real-Time Tasks

The federated scheduling [10] is an existing scheduling
paradigm for parallel real-time tasks. Given a task set τ ,
federated scheduling either admits a task set and outputs
a core assignment for each task; or declares the task set
to be unschedulable. In the core assignment, each high-
utilization task (utilization > 1) is allocated ni dedicated
cores, where ni =

⌈
Ci−Li

Di−Li

⌉
. During runtime, a greedy

scheduler is required to execute each high-utilization task on
its dedicated cores. All the low-utilization tasks are forced
to execute sequentially on the remaining cores scheduled by
a multiprocessor scheduling algorithm. Since low-utilization
tasks do not need parallelism to meet deadlines, in this work
we focus only on high-utilization tasks.

Federated scheduling has been proved to have a capacity
augmentation bound of 2, meaning that given m cores
federated scheduling can guarantee schedulability to any task
set τ as long as it satisfies: (1) the total utilization of the
task set is no more than half of the total available cores –∑
ui ≤ m/2; (2) for each task, the critical-path length is

less than half of its deadline – Li < Di/2.
Discussion: Why do we choose to integrate work steal-

ing into federated scheduling instead of other real-time
schedulers, such as global EDF? Firstly, as discussed in
related work, federated scheduling has the best capacity aug-
mentation bound of 2, so it can schedule task sets with higher
load than other scheduler strategies. More importantly, it
has the benefit that the parallel scheduler used for executing
parallel task does not need to be deadline- or priority-aware,
since the task is assigned with dedicated cores. Otherwise,
worker threads of the parallel scheduler have to be able to
quickly switch to jobs with shorter deadlines or higher prior-
ities when they arrive. However, recall that the advantage of
work stealing is that a worker thread works off its own deque
most of the time, which is against the requirement of fast
switching between jobs. Because of this, implementing other
parallel real-time scheduling strategies using work stealing
can be difficult and involve high overheads.

B. Incorporating work stealing overhead into federated
scheduling

When each parallel task is executed by a work-stealing
scheduler on its dedicated cores, the core assignment of
federated scheduling needs to incorporate work stealing
overheads when calculating core assignment. In work steal-
ing, there are two types of overheads that we need to
consider: stealing overhead and randomization overhead.

Stealing overheads includes the explicit costs of book-
keeping parallel nodes and the implicit cost of cache misses
due to the migration of stolen nodes. Since stealing can only

occur at spawn and sync points in the DAG, given a specific
DAG one can estimate the overheads due to scheduling
events by counting these quantities. Based on this insight,
burdened DAG is introduced to estimate stealing overheads
for DAG task [11]. Using profiling tools, such as Cilk View
and Cilkprof [12], the burdened critical-path length L̂i, with
stealing overheads incorporated, can be measured. When
calculating core assignment for tasks, we use the burdened
critical-path length L̂i to replace critical-path length Li, so
that stealing overhead is included.

Compared to a greedy scheduler, the randomness of work
stealing introduces additional overhead. In particular, even if
there is available work on another core, a core may still take
some time to find the available work, because the random
stealing may fail to find the available work. Thus, the execu-
tion time of a task under work stealing is a random variable.
By extending the result of stochastic federated scheduling
in [13], we incorporate the randomization overhead into core
assignment and also analyze the expected tardiness bound
for federated scheduling using work stealing.

To analyze the randomness overhead, we first state known
results on work-stealing response time γi for task τi with
total execution time Ci and critical path-length Li [8].

Lemma 1: [Tchi.13] A work-stealing scheduler guaran-
tees completion time γi on ni dedicated cores where

E [γi] ≤ Ci

ni
+ δLi + 1 (1)

P
{
γi ≤ Ci

ni
+ δ(Li + log2

1
ε ) + 1

}
≥ 1− ε (2)

Note that the δ in the above formula is the critical-path
length coefficient. Theoretically it has been proven to be at
most 3.65, while empirically it is set to 1.7 for measurement
using Cilk View [11] and is set to 1.5 when using Cilkprof.

Consider a random variable X with CDF function
F(x) = P{X ≤ x} = 1− e−λ(x−µ)

where µ = Ci

ni
+ δLi + 1 and λ = ln 2

δ . This is the CDF of
a shifted exponential distribution with mean value E [X] =
µ+ 1

λ = Ci

ni
+ δ(Li +

1
ln 2 ) + 1 and variance λ−2.

If we set x = µ + δ log2
1
ε , then we get ε = e−λ(x−µ).

Using Inequality (2), the above CDF can be rewritten as

F(x) =P
{
X ≤ Ci

ni
+ δ(Li + log2

1

ε
) + 1

}
= 1− ε

≥P
{
γi ≤

Ci
ni

+ δ(Li + log2
1

ε
) + 1

}
Therefore, the CDF of random variable X is the upper

bound of the CDF of completion time γi. Every instance
j drawn from the distribution of γi can be mapped to an
instance in the distribution of X that is no smaller than j.
In other words, X’s probability density function of f(x) =
λe−λ(x−µ) is the worst-case distribution of completion time
γi of task τi under work stealing.

Now we can use a lemma from queueing theory [14] to
calculate core assignment and bound the response time for
federated scheduling incorporated with work stealing.



Lemma 2: [KING70] For a D/G/1 queue, customers ar-
rive with minimum inter-arrival time Y , and the service
time X is a distribution with mean E [X ] and variance δ2X .
If E [X ] < Y , then the queue is stable and the expected
response time R is bounded by E [R] ≤ E [X ]+ δ2X

2(Y−E[X ]) .
Inspired by the stochastic analyses in [15] and [13],

Lemma 2 can be interpreted as follows: parallel jobs are
customers; implicit deadline is the inter-arrival time Y = Di;
and the completion time on ni dedicated cores using work
stealing is the service time X = γi. As discussed above,
f(x) is the worst-case distribution of γi with mean value
Ci

ni
+ δ(Li +

1
ln 2 ) + 1. Thus, Lemma 2 guarantees bounded

response time for ni > Ci

Di−δ(Li+
1

ln 2 )−1
, since

E [X ] = E [γi] ≤
Ci
ni

+ δ(Li +
1

ln 2
) + 1 < Di = Y

Therefore, after incorporating the stealing overhead and
randomness overhead into federated scheduling, the number
of cores assigned to a task is adapted as

ni =

⌊
Ci +Di − δL̂i
Di − δL̂i

⌋
(3)

Note that we omitted the terms 1
ln 2 and 1, because they are in

unit time step, which is negligible compared with Ci and Li
in actual time. If Di ≤ δL̂i, the task is deem unschedulable.

From Lemma 2, we can also calculate the bound on task
expected response time Ri. Again as f(x) is the worst-case
distribution of γi with variance ( δ

ln 2 )
2, given ni cores the

expected response time of task τi is bounded by

E [Ri] ≤ E [γi] +
δ2γi

2(Di − E [γi])

≤ Ci
ni

+ δL̂i +
( δ
ln 2 )

2

2(Di − Ci

ni
− δL̂i)

VI. RTWS PLATFORM

In this section, we describe the design of the RTWS
platform, which provides federated scheduling service for
parallel real-time tasks. RTWS has several benefits: (1) It
separates the goals of efficient parallel performance and
rigorous real-time execution. This separation of concerns
allows programmers to re-purpose existing parallel appli-
cations to be run with real-time semantics with minimal
modifications. (2) It allows the use of existing parallel
languages and runtime systems (not designed for real-time
programs) to explore the degree of real-time performance
one can achieve without implementing an entirely new
parallel runtime system. Therefore, we were able to evaluate
the performance of centralized scheduler from OpenMP and
the work stealing scheduler from Cilk Plus for real-time
task sets. (3) While RTWS does not explicitly consider
cache overheads, the scheduling policy has an inherent
advantage with respect to cache locality, since parallel tasks
are allocated dedicated cores and never migrate.

Application Programming Interface (API): The RTWS
API makes it easy to convert existing parallel programs

into real-time programs. Tasks are C or C++ programs that
include a header file (task.h) and conform to a simple
structure: instead of a main function, a run function is
specified, which is periodically executed when a job of the
task is invoked. In addition, a configuration file must be
provided for the task set, specifying runtime parameters
(including program name and arguments) and real-time
parameters (including period, work and burdened critical-
path length) for each task.

Platform Structure and Operation: RTWS separates the
functionalities of parallel scheduling and real-time schedul-
ing. We use two components to enforce these two functional-
ities, an real-time scheduler (RT-scheduler) and a parallel
dispatcher (PL-dispatcher).

Specifically, the RT-scheduler provides the real-time per-
formance of a task. Prior to execution, it reads tasks’ real-
time parameters from the configuration file and calculates a
core assignment using the formula (3) in Section V during
offline, which has incorporated work stealing overheads
into federated scheduling. The main function (provided by
RTWS) binds each task to its assigned cores (by changing
the CPU affinity mask). This core assignment ensures that
each task has sufficient number of dedicated cores to meet
most of its deadline during execution. Moreover, because
each parallel task is executed on dedicated cores and no
other tasks can introduce CPU interference with it, the PL-
dispatcher does not need to be deadline- or priority-aware.

During execution, the PL-dispatcher enforces the periodic
invocation of each task and calls an individual GNU Cilk
Plus (or OpenMP) runtime system to provide parallel execu-
tion of each task. Since there are multiple concurrent parallel
runtime systems that are unaware of each other, we need to
entirely isolate them from each other to minimize scheduling
overheads and CPU interference. Therefore, for Cilk Plus we
modified its runtime system, so that each Cilk Plus runtime
only creates ni workers, each of which is pinned to one of
the ni assigned cores. Similarly, for OpenMP we use static
thread management and create exactly ni threads to each
task. In other words, there is only one worker thread per
core and hence the worker assignment by PL-dispatcher is
consistent with the core assignment of the RT-scheduler.

Profiling Tool: Since the work and critical-path length
of each task must be specified to the platform (in the
configuration file), we also provide a simple profiling utility
to automatically measure these quantities for each task. The
work of a task can be measured by running the profiling
program on a single core. Measuring the critical-path length
is more difficult. We adopt a profiling tool Cilkprof [12],
which can automatically measure the work and the burdened
critical-path length of a single job. In particular, Cilkprof
uses compiler instrumentation to gather the execution time
of every call site (i.e., a node in the DAG) and calculate
the critical-path length in nanosecond. To be consistent with
GNU Cilk Plus (and GNU OpenMP), we use a version



of Cilkprof that instrumented the GCC compiler and in-
corporated the burdened DAG into the measurement. Intel
provides another tool Cilkview [11] that can measure the
number of instructions of burdened critical-path length using
dynamic binary instrumentation.

Discussion: In addition to using the work-stealing sched-
uler of Cilk Plus in RTWS (where the Real-Time Work-
Stealing (RTWS) comes from), the design of RTWS allows
us to instantiate another version of federated scheduling
service that uses the centralized scheduler of GNU OpenMP
(which we name as Real-Time Centralized Greedy (RTCG)
platform). As shown in Section IV, work stealing has better
parallel performance than the centralized scheduler. Thus,
RTWS using work stealing is a better candidate for parallel
tasks with soft real-time constraints, as confirmed via the
empirical comparison in Section VII. However, it may not
be the best approach for other scenarios. First and foremost,
the execution time of a parallel task using work stealing can
be as slow as its sequential execution time in the worst case,
even though the probability of the worst case happening
can be extremely low in practice. Therefore, it can never
be applied to hard real-time systems without modifying the
work stealing protocol to provide some form of progress
guarantee. In addition, for special purposed system where the
structure of parallel task is static and well measured, a static
scheduler that decides how to execute the parallel task prior
to execution can effectively reduce scheduling overheads and
may perform better than work stealing.

VII. PLATFORM EVALUATION

In this section, we evaluate the soft real-time performance
provided by RTWS using a randomized work-stealing sched-
uler (RTWS) compared to the alternative implementation of
federated scheduling using a centralized greedy scheduler
(RTCG). We use three DAG applications written in both
Cilk Plus and OpenMP (discussed in Section IV) to ran-
domly generate task sets for emperical experiments. To the
best of our knowledge, RTWS is the first real-time platform
that supports general DAG tasks, such as these benchmark
programs. Since other existing real-time systems do not
support parallel DAG tasks, we do not compare against them.

Experiments were conducted on a 32-core machine com-
posed of four Intel Xeon processors (each with 8 cores).
When running experiments, we reserved two cores for oper-
ating system services, leaving 30 experimental cores. Linux
with CONFIG PREEMPT RT patch version r14 applied
was the underlying RTOS.

A. Benchmark Task Sets Generation

We now describe how we generate task sets composed
of the three benchmark programs (Cholesky, Heat and LU)
with the general DAG structures. We generate 4 sets of task
sets and evaluate their performances. The first 3 sets are
composed with tasks running the same application, denoted

as Cholesky, Head and LU task sets. The last set comprises
a mix of all benchmarks, denoted as Mixed task sets.

We profile Cholesky, Heat and LU programs using 14, 6
and 3 different input sizes, respectively. For each program
with each input size, we measure its work and burdened
critical-path length using Cilkprof. Then we generate dif-
ferent tasks (from one benchmark with one input size) and
assign it with a randomly generated utilization. To see the
effect of scalability of large parallel tasks (i.e., spanning
many cores), we intentionally create 5 types of tasks: tasks
with mean utilization from {1, 3, 6, 12, 15}. When assigning
utilization to a task, we always try to pick the largest mean
utilization that does not make the task set utilization exceed
the total utilization that we desire. After deciding a mean
utilization, we will then randomly generate the utilization of
the task using the mean value. A task’s period is calculated
using its work over utilization. We keep adding tasks into
the task set, until it reaches the desired total utilization. For
each setting, we randomly generate 10 task sets.

B. Evaluation Results

For each DAG task set, we record the deadline miss ratio,
which is calculated using the total number of deadline misses
divided by the total number of jobs in the task set. We also
record the response time of each individual job during the
execution to calculate a relative response time, which is
the job’s response time over its deadline. We then calculate
the average relative response time for each task set.

In the first two comparisons between RTWS and RTCG,
we’d like to see how the integration of federated scheduling
and randomized work stealing performs compared with
federated scheduling using a centralized greedy scheduler
given the same resource capacity for soft real-time task
sets. Therefore, for these experiments we use the same core
assignment as described in Section V, which incorporates
work stealing overheads into federated scheduling.

Since the centralized scheduler generally has larger over-
heads and takes longer to execute as shown in Section IV,
it is not surprising to see that RTCG performs worse than
RTWS given the same resource capacity. To further analyze
the performance difference between the two approaches, in
the last experiment we increase the resource capacity for
RTCG. We’d like to see how much more resource capacity
RTCG requires in order to schedule the same task sets
compared with RTWS.

(1) Deadline miss ratio comparison: We first compare
the deadline miss ratio in Figure 8(a),8(d),8(g) and 8(j)
for Cholesky, Heat, LU and Mixed task sets, respectively.
Notably, most of the task sets under RTWS has no deadline
misses and all of the task sets have a deadline miss ratio no
more than 10%. In fact, from all the experiments we run,
there are only 2.25% tasks (28 out of 1243 tasks) having
deadline misses. In contrast, given the same core assignment
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(a) Deadline miss ratio of Cholesky task sets
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(b) Relative Response time of Cholesky task sets
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(c) Required number of cores of Cholesky task sets
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(d) Deadline miss ratio of Heat task sets
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(e) Relative Response time of Heat task sets
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(f) Required number of cores of Heat task sets
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(g) Deadline miss ratio of LU task sets
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(h) Relative Response time of LU task sets
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(i) Required number of cores of LU task sets
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(j) Deadline miss ratio of Mixed task sets
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(k) Relative Response time of Mixed task sets
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(l) Required number of cores of Mixed task sets

Figure 8: Deadline miss ratio, average relative response time and required number of cores of different task sets (Cholesky, Heat,
LU and Mixed task sets) with increasing total utilization under RTWS (providing federated scheduling service integrated with
a randomized work-stealing scheduler in GNU Cilk Plus) and RTCG (providing federated scheduling service integrated with a
centralized greedy scheduler in GNU OpenMP). For experiments that measure deadline miss ratios and average relative response
time (i.e., the first two columns), RTWS and RTCG use the same core assignment. For experiments that examine the number of
required cores (i.e., the last column), we increase the number of cores for each task under RTCG until it misses no more than
60% of deadlines.



RTCG misses substantially more deadlines, especially for
Heat task sets where many tasks miss all of their deadlines.

(2) Relative response time comparison: In Fig-
ure 8(b),8(e),8(h) and 8(k), we observe that RTCG has much
higher average relative response time than RTWS, given the
same resource capacity. For all task sets, the average relative
response time of RTWS is less than 1, while some tasks
under RTCG even have relative response times larger than a
hundred. In order to clearly see the relative response times
smaller than 1, when plotting the figures we mark all the
relative response times that are larger than 3 as 3.

(3) Required resource capacity: From the first two com-
parisons, we can clearly see that RTCG requires more cores
(i.e., resource capacity) in order to provide the same real-
time performance as RTWS. Thus, in Figure 8(c),8(f),8(i)
and 8(l) we keep increasing the number of cores assigned
to tasks under RTCG that have more than 25% of deadline
misses. Note that all tasks under RTWS meet at least 80%
of deadlines. We compare the required number of cores of
RTCG and RTWS for the same task sets to meet most of
their deadlines. If a task set misses most deadlines when
allocated with all the 30 available cores, then we mark the
number of required cores as 34. For Cholesky and LU task
sets, RTCG requires about 1 to 3 additional cores. For some
Heat task sets, even doubling the number of cores for RTCG
is still not sufficient.

VIII. RELATED WORK

Real-time multiprocessor scheduling for hard real-time
systems has been well researched both for global and
partitioned schedulers, and for fixed and dynamic priori-
ties [16], [17]. Most prior work on soft real-time guarantees
considers sequential tasks with worst-case parameters [18].
For these tasks, many different global schedulers [19]–[22]
can provide bounded tardiness with no utilization loss.

For parallel tasks, almost all research focused on tasks
with hard real-time requirements. Earlier work uses different
task decomposition techniques to provide hard real-time
bounds on different parallel task models [23]–[27]. Later,
better bounds for schedulers without decomposition have
been proved for general DAG tasks. In particular, global
EDF and global deadline monotonic scheduling have been
proved to have resource augmentation bounds of 2 − 1/m
and 3−1/m, respectively [28], [29]; they are also proved to
have capacity augmentation bounds of 2.6 and 3.7 in [10]. In
the same work, a federated scheduling paradigm is proposed,
which provides the best capacity augmentation bound of 2.

For soft real-time scheduling of parallel tasks, Liu and
Anderson [30] provide analysis for bounded response time of
global EDF, and Nogueira et al. [31] investigate in priority-
based work stealing scheduling scheme. The only work
considering parallel tasks with soft real-time constraints that
we are aware of analyzes bounded tardiness for stochastic
parallel tasks for federated scheduling [13].

Regarding system implementation, we are aware of two
systems [26], [32] that support parallel real-time tasks
based on different decomposition-based analysis. Kim et
al. [26] used a reservation-based OS to run a parallel real-
time program of an autonomous vehicle. [32] implement
decomposition-based fixed-priority scheduling, called RT-
OpenMP, on standard Linux. However, both systems are
based on task decomposition, which usually requires sub-
stantial modification to application programs, compilers,
and/or the operating system. They also requires detailed
information about task structure and subtask execution times.

For platforms without task decomposition, [33] presents a
platform supporting partitioned fixed-priority scheduling for
parallel real-time tasks on a special COMPOSITE operating
system with significantly lower parallel overhead. Li [34]
implements a prototype parallel global EDF platform, called
PGEDF, which is based on LITMUSRT [35] patched Linux.
Note that all of these systems only support scheduling
synchronous (fork-join) tasks.

Recently, scalability of global scheduling was addressed
with the use of message passing to communicate global
scheduling decision [36]. Before that Brandenburg et
al., [37] empirically studied the scalability of several
scheduling algorithms for multiprocessors. However, none
of them has targeted the scalability problem of parallel tasks.

A prototype version of our RTCG platform, which was
tailored for the centralized greedy scheduler in OpenMP and
programs with only parallel for-loops, has already been used
in civil engineering domains. Ferry et al. [1] studied how to
exploit parallelism in real-time hybrid structural simulations
(RTHS) to improve real-time performance. The resulted
parallelized RTHS program was executed and scheduled by
our RTCG prototype. Experiments on RTHS in [1] thus
illustrates how parallel real-time scheduling can practically
help to improve performance in cyber-physical systems.

IX. CONCLUSIONS

In this paper, we present RTWS, the first parallel schedul-
ing system for soft real-time tasks with DAG structures.
RTWS adapts and integrates federated scheduling with work
stealing. Integrated with the widely used Cilk Plus con-
currency platform, RTWS can schedule standard Cilk Plus
programs. Furthermore, RTWS does not require detailed
knowledge of task structure. Instead, it only use coarse-
grained task parameters that can be easily measured using
existing Cilk Plus tools. Experimental results demonstrated
that RTWS can considerably improve the response time
of tasks on a given number of cores. Especially when
running real benchmark programs, it siginificatly reduces
the required resources for task set schedulability. Therefore
it represents a promising step towards practical development
and deployment of real-time applications based on existing
programming languages, platform and tools.
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