
Multi-core Real-Time Scheduling for Generalized Parallel Task Models

Abusayeed Saifullah, Kunal Agrawal, Chenyang Lu, and Christopher Gill
Department of Computer Science and Engineering

Washington University in St. Louis
{saifullaha, kunal, lu, cdgill}@cse.wustl.edu

Abstract—Multi-core processors offer a significant perfor-
mance increase over single core processors. Therefore, they
have the potential to enable computation-intensive real-time
applications with stringent timing constraints that cannot be
met on traditional single-core processors. However, most results
in traditional multiprocessor real-time scheduling are limited
to sequential programming models and ignore intra-task par-
allelism. In this paper, we address the problem of scheduling
periodic parallel tasks with implicit deadlines on multi-core
processors. We first consider a synchronous task model where
each task consists of segments, each segment having an arbi-
trary number of parallel threads that synchronize at the end
of the segment. We propose a new task decomposition method
that decomposes each parallel task into a set of sequential
tasks. We prove that our task decomposition achieves a resource
augmentation bound of 4 and 5 when the decomposed tasks
are scheduled using global EDF and partitioned deadline
monotonic scheduling, respectively. Finally, we extend our
analysis to directed acyclic graph (DAG) task model where
each node in the DAG has unit execution requirement. We
show how these tasks can be converted into synchronous tasks
such that the same transformation can be applied and the same
augmentation bounds hold.

Keywords-parallel task; multi-core processor; real-time
scheduling; resource augmentation bound.

I. INTRODUCTION

In recent years, multi-core processor technology has
improved dramatically as chip manufacturers try to boost
performance while minimizing power consumption. This
development has shifted the scaling trends from processor
clock frequencies to the number of cores per processor.
For example, Intel has recently put 80 cores in a Teraflops
Research Chip [1] with a view to making it generally
available, and ClearSpeed has developed a 96-core proces-
sor [2]. While hardware technology is moving at a rapid
pace, software and programming models have failed to keep
pace. For example, Intel has set a time frame of 5 years
to make their 80-core processor generally available due to
the inability of current operating systems and software to
exploit the benefits of multi-core processors [1].

As multi-core processors continue to scale, they pro-
vide an opportunity for performing more complex and
computation-intensive tasks in real-time. However, to take
full advantage of multi-core processing, these systems must
exploit intra-task parallelism, where parallelizable real-time
tasks can utilize multiple cores at the same time. By

exploiting intra-task parallelism, multi-core processors can
achieve significant real-time performance improvement over
traditional single-core processors for many computation-
intensive real-time applications such as video surveillance,
radar tracking, and hybrid real-time structural testing [3]
where the performance limitations of traditional single-core
processors have been a major hurdle.

The growing importance of parallel task models for
real-time applications poses new challenges to real-time
scheduling theory that has mostly focused on sequential
task models. Notably, the state-of-the-art work [4] on par-
allel scheduling for real-time tasks analyzes the resource
augmentation bound using partitioned Deadline Monotonic
(DM) scheduling. It considers a synchronous task model,
where each parallel task consists of a series of sequential or
parallel segments. We call this model synchronous, since all
the threads of a parallel segment must finish before the next
segment starts, creating a synchronization point. However,
that task model is restrictive in that, for every task, all the
segments have an equal number of parallel threads, and
that number must be no greater than the total number of
processor cores.

While the work presented in [4] represents a promising
step towards parallel real-time scheduling on multi-core
processors, the restrictions on the task model make the so-
lutions unsuitable for many real-time applications that often
employ different numbers of threads in different segments
of computation. In addition, its analyzes the resource aug-
mentation bound under partitioned DM scheduling only, and
does not consider other scheduling policies such as global
EDF. To overcome these limitations, we consider a more
general synchronous task model in this paper. Our tasks
still contain segments where the threads of each segment
synchronize at its end. However, in contrast to the restrictive
task model addressed in [4], for any task in our model,
each segment can contain an arbitrary number of parallel
threads. That is, different segments of the same parallel task
can contain different numbers of threads, and segments can
contain more threads than the number of processor cores.
This model is more portable, since the same task can be
executed on machines with small as well as large numbers
of cores. Specifically, our work makes the following new
contributions to real-time scheduling for generalized parallel
task models:

• For the general synchronous task model, we propose
a task decomposition algorithm that converts each im-
plicit deadline parallel task into a set of constrained
deadline sequential tasks.

• We derive a resource augmentation bound of 4 when
these decomposed tasks are scheduled using global
EDF scheduling. To our knowledge, this is the first re-
source augmentation bound for global EDF scheduling
of parallel tasks.

• Using the proposed task decomposition, we also derive
a resource augmentation bound of 5 for our more
general task model under partitioned DM scheduling.

• Finally, we extend our analyses for a Directed Acyclic
Graph (DAG) task model, an even more general model
for parallel tasks. In particular, we show that we can
transform DAG tasks into synchronous tasks, and then
use our proposed decomposition to get the same re-
source augmentation bounds for DAG tasks.

In the rest of the paper, Section II describes the parallel
synchronous task model. Section III presents the proposed
task decomposition. Section IV presents the global EDF
scheduling and analysis. Section V presents the analysis for
partitioned DM scheduling. Section VI extends our results
and analyses for DAG task models. Section VII reviews
related work. Finally, we conclude in Section VIII.

II. PARALLEL SYNCHRONOUS TASK MODEL

We primarily consider a synchronous task model, where
each parallel job consists of many computation segments,
and each segment may contain many parallel threads which
synchronize at the end of the segment. Such tasks are
generated by parallel for loops, a construct common to
many parallel languages such as OpenMP [5] and Intel’s
CilkPlus [6].

More precisely, we consider a set of n synchronous,
implicit deadline, periodic, parallel tasks denoted by τ =
{τ1, τ2, · · · , τn}. Each task τi, 1 ≤ i ≤ n, is a sequence
of si segments, where the j-th segment is represented
by 〈ei,j ,mi,j〉, with mi,j being the number of threads
in the segment, and ei,j being the worst case execution
requirement of each of its threads. When mi,j > 1, the
threads in the j-th segment can be executed in parallel
on different cores. The j-th segment starts only after all
threads of (j − 1)-th segment have completed. Thus, each
parallel task τi is represented as follows (Figure 1): τi :
(〈ei,1,mi,1〉, 〈ei,2,mi,2〉, · · · , 〈ei,si ,mi,si〉) where

• si is the total number of segments in task τi.
• In a segment 〈ei,j ,mi,j〉, where 1 ≤ j ≤ si, ei,j is

the worst case execution requirement of each thread,
and mi,j is the number of threads. Therefore, any
segment 〈ei,j ,mi,j〉 with mi,j > 1 is a parallel segment
with a total of mi,j parallel threads, and any segment
〈ei,j ,mi,j〉 with mi,j = 1 is a sequential segment since

it has only one thread. A task τi with si = 1 and
mi,si = 1 is a sequential task.

The period of task τi is denoted by Ti. The deadline Di

of τi is equal to its period Ti. Each task τi generates an
infinite sequence of jobs, with arrival times of successive
jobs separated by Ti time units. Jobs are fully independent
and preemptive: any job can be suspended (preempted) at
any time instant, and is later resumed with no cost or penalty.
The total number of processor cores is denoted by m.

…

1
e
i,1

2
e
i,1

3
e
i,1

m
i,1

e
i,1

1
e
i,2

e
i,2

1

ei,si

2
ei,si

ei,si
m
i,2

m
i,si〈e

i,1
, m

i,1
〉 〈e

i,2
, m

i,2
〉 〈e

i,si
, m

i,si
〉..

.

..

.

Figure 1. A parallel synchronous task τi

III. TASK DECOMPOSITION

In this section, we present a decomposition of our parallel
tasks into a set of sequential tasks. In particular, we propose
a strategy that decomposes each implicit deadline parallel
task into a set of constrained deadline sequential tasks by
converting each thread of the parallel task into its own
sequential task and assigning appropriate deadlines to these
tasks. This strategy allows us to use existing schedulability
analysis for multiprocessor scheduling (both global and
partitioned) to prove the resource augmentation bounds for
parallel tasks (to be discussed in Sections IV and V). Here,
we first present some useful terminology. We then present
our decomposition and a density analysis for it.

A. Terminology

Definition 1. The minimum execution time (i.e. the critical
path length) Pi of task τi on a multi-core platform where
each processor core has unit speed is defined as follows:

Pi =

si∑
j=1

ei,j

Observation 1. On a unit-speed multi-core platform, any
task τi requires at least Pi units of time even when the
number of cores m is infinite.

On a multi-core platform where each processor core has
speed ν, the critical path length of task τi is denoted by
Pi,ν and is expressed as follows:

Pi,ν =
1

ν

si∑
j=1

ei,j =
Pi
ν

Definition 2. The maximum execution time (i.e. the work)
Ci of task τi on a multi-core platform where each processor
core has unit speed is defined as follows:

Ci =

si∑
j=1

mi,j .ei,j

That is, Ci is the execution time of τi on a unit-speed
single core processor if it is never preempted. On a multi-
core platform where each processor core has speed ν, the
maximum execution time of task τi is denoted by Ci,ν and
is expressed as follows:

Ci,ν =
1

ν

si∑
j=1

mi,j .ei,j =
Ci
ν

(1)

Definition 3. The utilization ui of task τi, and the total
utilization usum(τ) for the set of n tasks τ on a unit-speed
multi-core platform are defined as follows:

ui =
Ci
Ti

; usum(τ) =

n∑
i=1

Ci
Ti

Observation 2. If the total utilization usum is greater than
m, then no algorithm can schedule τ on m identical unit
speed processor cores.

Definition 4. The density δi of task τi, the maximum density
δmax(τ) and the total density δsum(τ) of the set of n tasks τ
on a unit-speed multi-core platform are defined as follows:

δi =
Ci
Di

; δsum(τ) =

n∑
i=1

δi; δmax(τ) = max{δi|1 ≤ i ≤ n}

For an implicit deadline task τi, δi = ui.

B. Decomposition

The high-level idea of our decomposition is as follows.
1) In our decomposition, each thread of the task becomes

its own sequential subtask. These individual subtasks
are assigned release times and deadlines. Since each
thread of a segment is identical (with respect to its
execution time), we consider each segment one at a
time, and assign the same release times and deadlines
to all subtasks generated from threads of the same
segment.

2) Since a segment 〈ei,j ,mi,j〉 has to complete before
segment 〈ei,j+1,mi,j+1〉 can start, the release time
of the subtasks of segment 〈ei,j+1,mi,j+1〉 is equal
to the absolute deadline of the subtasks of segment
〈ei,j ,mi,j〉.

3) We calculate the slack for each task considering a
multi-core platform where each processor core has
speed 2. The slack for task τi, denoted by Li, is

defined as the difference between its deadline and its
critical path length on 2-speed processor cores i.e.

Li = Ti − Pi,2 = Ti −
Pi
2

(2)

This slack is distributed among the segments accord-
ing to a principle of “equitable density” meaning that
we try to keep the density of each segment approx-
imately rather than exactly equal by maintaining a
uniform upper bound on the densities. To do this,
we take both the number of threads in each segment
and the computation requirement of the threads in
each segment into consideration while distributing the
slack.

In order to take the computation requirement of the
threads in each segment into consideration, we assign pro-
portional slack fractions instead of absolute slack. We now
formalize the notion of slack fraction, fi,j , for the j-th
segment (i.e. segment 〈ei,j ,mi,j〉) of task τi. Slack fraction
fi,j is the fraction of Li (i.e. the total slack) to be allotted
to segment 〈ei,j ,mi,j〉 proportionally to its minimum com-
putation requirement. Each thread in segment 〈ei,j ,mi,j〉
has a minimum execution time of ei,j

2 on 2-speed processor
cores, and is assigned a slack value of fi,j

ei,j
2 . Each thread

gets this “extra time” beyond its execution requirement on
2-speed processor cores. Thus, for each thread in segment
〈ei,j ,mi,j〉, the relative deadline is assigned as

di,j =
ei,j
2

+ fi,j .
ei,j
2

=
ei,j
2

(1 + fi,j)

For example, if a segment has ei,j = 4 and it is as-
signed a slack fraction of 1.5, then its relative deadline is
2(1 + 1.5) = 5. Since a segment cannot start before all
previous segments complete, the release offset of a segment
〈ei,j ,mi,j〉 is assigned as

φi,j =

j−1∑
k=1

di,k

Thus, the density of each thread in segment 〈ei,j ,mi,j〉 on
2-speed processor cores is:

ei,j
2

di,j
=

ei,j
2

ei,j
2 (1 + fi,j)

=
1

1 + fi,j

Since a segment 〈ei,j ,mi,j〉 consists of mi,j threads, the
segment’s density on 2-speed processor cores is as follows:

mi,j

1 + fi,j
(3)

Note that to meet the deadline of the parallel task on 2-
speed processor cores, the segment slack should be assigned
so that

fi,1.
ei,1
2

+ fi,2.
ei,2
2

+ fi,3.
ei,3
2

+ · · ·+ fi,si .
ei,si
2
≤ Li.

In our decomposition, we always assign the maximum
possible segment slack on 2-speed processor cores and,

therefore, for our decomposition, the above inequality is in
fact an equality.

Since after assigning slack, we want to keep the density
of each segment about equal, we must take the number of
threads of the segment into consideration while assigning
slack fractions. Also, we want to keep the density of any
thread at most 1 on 2-speed processor cores. Hence, we
calculate a threshold based on task parameters. The segments
whose number of threads is greater than this threshold
are assigned slack. The other segments are not assigned
any slack, since they are deemed to be less computation
intensive. Hence, to calculate segment slack according to
equitable density, we classify segments into two categories:

• Heavy segments are those which have mi,j >
Ci,2

Ti−Pi,2
.

That is, they have many parallel threads.
• Light segments are those which have mi,j ≤ Ci,2

Ti−Pi,2
.

Using that categorization, we also classify parallel tasks into
two categories: tasks that have some or all heavy segments
versus tasks that have only light segments.

Tasks with some (or all) heavy segments: For the tasks
which have some heavy segments, we treat heavy and light
segments differently while assigning slack. In particular, we
assign no slack to the light segments; that is, segments with
mi,j ≤ Ci,2

Ti−Pi,2
are assigned fi,j = 0. The total available

slack Li is distributed among the heavy segments (segments
with mi,j >

Ci,2

Ti−Pi,2
) in a way so that each of these segments

has the same density.
For simplicity of presentation, we first distinguish

notation between the heavy and light segments.
Let the heavy segments be represented by:
{〈ehi,1,mh

i,1〉, 〈ehi,2,mh
i,2〉, · · · , 〈ehi,shi ,m

h
i,shi
〉}, where

shi ≤ si (superscript h standing for ‘heavy’). Then, let

Phi,2 =
1

2

shi∑
j=1

ehi,j ; Chi,2 =
1

2

shi∑
j=1

mh
i,j .e

h
i,j (4)

Now, let the light segments be represented by:
{〈e`i,1,m`

i,1〉, 〈e`i,2,m`
i,2〉, · · · , 〈e`i,s`i ,m

`
i,s`i
〉}, where s`i =

si − shi (superscript ` standing for ‘light’). Then, let

P `i,2 =
1

2

s`i∑
j=1

e`i,j ; C`i,2 =
1

2

s`i∑
j=1

m`
i,j .e

`
i,j (5)

Now, the following relations hold:

Pi,2 =
Pi
2

= Phi,2+P
`
i,2; Ci,2 =

Ci
2

= Chi,2+C
`
i,2 (6)

Now we calculate slack fraction fhi,j for all heavy seg-
ments (i.e. segments 〈ehi,j ,mh

i,j〉, where 1 ≤ j ≤ shi and
mh
i,j >

Ci,2

Ti−Pi,2
) so that they all have equal density on 2-

speed processor cores. That is,

mh
i,1

1 + fhi,1
=

mh
i,2

1 + fhi,2
=

mh
i,3

1 + fhi,3
= · · · =

mh
i,shi

1 + fh
i,shi

(7)

In addition, since all the slack is distributed among the heavy
segments, the following equality must hold:

fhi,1.e
h
i,1+ f

h
i,2.e

h
i,2+ f

h
i,3.e

h
i,3+ · · ·+ fhi,shi .e

h
i,shi

= 2.Li (8)

It follows that the value of each fhi,j , 1 ≤ j ≤ shi , can be
determined by solving Equations 7 and 8 as shown below.

From Equation 7, each fhi,j , 2 ≤ j ≤ shi , can be expressed
in terms of fhi,1 as follows

fhi,j = (1 + fhi,1)
mh
i,j

mh
i,1

− 1 (9)

Putting this value of each fhi,j , 2 ≤ j ≤ shi , into Equation 8:

fhi,1e
h
i,1 +

shi∑
j=2

((
(1 + fhi,1)

mh
i,j

mh
i,1

− 1
)
ehi,j

)
= 2Li

⇔fhi,1ehi,1 +
shi∑
j=2

(
mh
i,j

mh
i,1

ehi,j + fhi,1
mh
i,j

mh
i,1

ehi,j − ehi,j

)
= 2Li

⇔fhi,1ehi,1 +
1

mh
i,1

shi∑
j=2

mh
i,je

h
i,j +

fhi,1
mh
i,1

shi∑
j=2

mh
i,je

h
i,j

−
shi∑
j=2

ehi,j = 2Li

⇔fhi,1 =

2Li +
shi∑
j=2

ehi,j − 1
mh

i,1

shi∑
j=2

mh
i,je

h
i,j

ehi,1 +
1

mh
i,1

shi∑
j=2

mh
i,je

h
i,j

⇔fhi,1 =

2Li + (
shi∑
j=2

ehi,j + ehi,1)− (ehi,1 +
1

mh
i,1

shi∑
j=2

mh
i,je

h
i,j)

ehi,1 +
1

mh
i,1

shi∑
j=2

mh
i,je

h
i,j

⇔fhi,1 =

2Li +
shi∑
j=1

ehi,j

ehi,1 +
1

mh
i,1

shi∑
j=2

mh
i,je

h
i,j

− 1

⇔fhi,1 =
2Li + 2Phi,2

ehi,1 +
1

mh
i,1

shi∑
j=2

mh
i,je

h
i,j

− 1 (From 4)

⇔fhi,1 =
mh
i,1(2Li + 2Phi,2)

mh
i,1e

h
i,1 +

shi∑
j=2

mh
i,je

h
i,j

− 1

2

2

2

2

1

1

〈2,5〉
3

3
2

〈3,2〉 〈1,2〉Deadline Di = Ti = 15

Pi,2= (2+3+1)/2=3; Ci,2= (5*2+2*3+2*1)/2=9

 9/(15-3)=3/4; Hence P
l

i,2= 0; C
l

i,2=0

(a) A parallel synchronous task τi

2

2

2

1

13
2

f
i,1

= 5*(5/3)-1

d
i,1
= 25/3

fi,3= 2*(5/3)-1

di,3= 5/3

f
i,2
= 2*(5/3)-1

d
i,2
= 5

offset Φi,2=25/3
offset Φi,3=40/3

3
2

(b) Decomposed task τ decom
i

Figure 2. An example of decomposition

⇔fhi,1 =
mh
i,1(2Li + 2Phi,2)

2Chi,2
− 1 (From 4)

⇔fhi,1 =
mh
i,1(Li + Phi,2)

Ci,2 − C`i,2
− 1 (From 6)

⇔fhi,1 =
mh
i,1((Ti − Pi,2) + Phi,2)

Ci,2 − C`i,2
− 1 (From 2)

⇔fhi,1 =
mh
i,1(Ti − (Phi,2 + P `i,2) + Phi,2)

Ci,2 − C`i,2
− 1 (From 6)

⇔fhi,1 =
mh
i,1(Ti − P `i,2)
Ci,2 − C`i,2

− 1

Now putting the above value of fhi,1 in Equation 7, for any
heavy segment 〈ehi,j ,mh

i,j〉:

fhi,j =
mh
i,j(Ti − P `i,2)
Ci,2 − C`i,2

− 1 (10)

Intuitively, the slack never should be negative, since the
deadline should be no less than the computation require-
ment of the thread. Since mh

i,j >
Ci,2

Ti−Pi,2
, according to

Equation 10, the quantity
mh

i,j(Ti−P `
i,2)

Ci,2−C`
i,2

≥ 1. This implies

that fhi,j ≥ 0. Now, using Equation 3, the density of every
segment 〈ehi,j ,mh

i,j〉 is:

mh
i,j

1 + fhi,j
=

mh
i,j

1 +
mh

i,j(Ti−P `
i,2)

Ci,2−C`
i,2

− 1
=
Ci,2 − C`i,2
Ti − P `i,2

(11)

Figure 2 shows a simple example of decomposition for a
task τi consisting of 3 segments.

Tasks with no heavy segments: When the parallel task
does not contain any heavy segments, we just assign the
slack proportionally (according to the length of ei,j) among
all segments. That is,

fi,j =
Li
Pi,2

(12)

By Equation 3, the density of each segment 〈ei,j ,mi,j〉 is:

mi,j

1 + fi,j
=

mi,j

1 + Li

Pi,2

= mi,j
Pi,2

Li + Pi,2
= mi,j

Pi,2
Ti

(13)

C. Density Analysis

Once the above decomposition is done on task τi:
(〈ei,1,mi,1〉, 〈ei,2,mi,2〉, · · · , 〈ei,si ,mi,si〉), each thread of
each segment 〈ei,j ,mi,j〉, 1 ≤ j ≤ si, is considered as a
sequential multiprocessor subtask. We use τ decom

i to denote
task τi after decomposition. That is, τ decom

i denotes the
set of subtasks generated from τi through decomposition.
Similarly, we use τ decom to denote the entire task set τ after
decomposition. That is, τ decom is the set of all subtasks that
our decomposition generates. Since fi,j ≥ 0, ∀1 ≤ j ≤ si,
∀1 ≤ i ≤ n, the maximum density δmax,2 of any subtask
(thread) among τ decom on 2-speed processor cores:

δmax,2 = max{ 1

1 + fi,j
} ≤ 1 (14)

Lemma 1 shows that the density of every segment is at most
Ci/2

Ti−Pi/2
for any task with or without heavy segments.

Lemma 1. After the decomposition, the density of every
segment 〈ei,j ,mi,j〉, where 1 ≤ j ≤ si, of every task τi on
2-speed processor cores is upper bounded by Ci/2

Ti−Pi/2
.

Proof: First, we analyze the case when the task contains
some heavy segments. According to Equation 11, for every
heavy segment 〈ei,j ,mi,j〉, the density is:

Ci,2 − C`i,2
Ti − P `i,2

≤ Ci,2
Ti − P `i,2

(since C`i,2 ≥ 0)

≤ Ci,2
Ti − Pi,2

(since Pi,2 ≥ P `i,2)

=
Ci/2

Ti − Pi/2

For every light segment 〈ei,j ,mi,j〉, fi,j = 0. That is, its
deadline is equal to its computation requirement ei,j

2 on 2-

speed processor cores. Therefore, its density is:

mi,j

1 + fi,j
= mi,j ≤

Ci,2
Ti − Pi,2

=
Ci/2

Ti − Pi/2
For the case when there are no heavy segments in τi, for

every segment 〈ei,j ,mi,j〉 of τi, mi,j ≤ Ci,2

Ti−Pi,2
. Since Ti ≥

Pi,2 (Observation 1), the density of each segment 〈ei,j ,mi,j〉
(Equation 13) of τi:

mi,j
Pi,2
Ti
≤ mi,j ≤

Ci,2
Ti − Pi,2

=
Ci/2

Ti − Pi/2
Hence, follows the lemma.

Thus, our decomposition distributes the slack so that each
segment has a density that is bounded above. Theorem 2
establishes an upper bound on the density of every task after
decomposition.

Theorem 2. The density δi,2 of every τ decom
i , 1 ≤ i ≤ n, (i.e.

the density of every task τi after decomposition) on 2-speed
processor cores is upper bounded by Ci/2

Ti−Pi/2
.

Proof: After the decomposition, the densities of all
segments of τi comprise the density of τ decom

i . However,
no two segments are simultaneous active, and each segment
occurs exactly once during the activation time of task τi.
Therefore, we can replace each segment with the segment
that has the maximum density. Thus, task τ decom

i can be
considered as si occurences of the segment that has the
maximum density, and therefore, the density of the entire
task set τ decom

i is equal to that of the segment having the
maximum density which is at most Ci/2

Ti−Pi/2
(Lemma 1).

Therefore, δi,2 ≤ Ci/2
Ti−Pi/2

.

Lemma 3. If τ decom is schedulable, then τ is also schedu-
lable.

Proof: For each τ decom
i , 1 ≤ i ≤ n, its deadline and

execution requirement are the same as those of original task
τi. Besides, in each τ decom

i , a subtask is released only after all
its preceding segments are complete. Hence, the precedence
relations in original task τi are retained in τ decom

i . Therefore,
if τ decom is schedulable, then a schedule must exist for τ
where each task in τ can meet its deadline.

IV. GLOBAL EDF SCHEDULING

After our proposed decomposition, we consider the
scheduling of synchronous parallel tasks. Lakshmanan et
al. [4] show that there exist task sets with total utilization
slightly greater than (and arbitrarily close to) 1 that are
unschedulable with m processor cores. Since our model is
a generalization of theirs, this lower bound still holds for
our tasks. Since conventional utilization bound approaches
are not useful for schedulability analysis of parallel tasks,
we (like [4]) use the resource augmentation bound approach,
originally introduced in [7]. We first consider global schedul-
ing where tasks are allowed to migrate among processor

cores. We then analyze schedulability in terms of a resource
augmentation bound. Since the synchronous parallel tasks
are now split into individual sequential subtasks, we can use
global EDF (Earliest Deadline First) scheduling for them.
The EDF policy for subtask scheduling is basically the
same as the traditional global EDF where jobs with earlier
deadlines are assigned higher priorities.

Under global EDF scheduling, we now present a schedu-
lability analysis in terms of a resource augmentation bound
for our decomposed tasks. For any task set, the resource
augmentation bound ν of a scheduling policy A on a multi-
core processor with m cores represents a processor speedup
factor. That is, if there exists any (optimal) algorithm under
which a task set is feasible on m identical unit-speed proces-
sor cores, then A is guaranteed to successfully schedule this
task set on a m-core processor, where each processor core is
ν times as fast as the original. In Theorem 5, we show that,
our proposed decomposition needs a resource augmentation
bound of 4 under global EDF scheduling.

Our analysis uses a result for constrained deadline spo-
radic sequential tasks on m processors [8], stated in Theo-
rem 4. This result is a generalization of the result for implicit
deadline sporadic tasks [9].

Theorem 4. (From [8]) Any constrained deadline sporadic
task set π with total density δsum(π) and maximum density
δmax(π) is schedulable using global EDF strategy on m
unit-speed processor cores if

δsum(π) ≤ m− (m− 1)δmax(π)

Since we converted our synchronous parallel tasks into
sequential tasks with constrained deadlines, this result ap-
plies to our transformed task set τ decom. If we can schedule
τ decom, then we can schedule τ (Lemma 3).

Theorem 5. If a synchronous parallel task set τ is schedu-
lable on m unit-speed processor cores using any (optimal)
algorithm, then the transformed task set τ decom is schedula-
ble using global EDF on m processor cores of speed 4.

Proof: Let there exist some algorithm A under which
the original task set τ is feasible on m identical unit-speed
processor cores. If τ is schedulable under A, the following
condition must hold (Observation 2):

n∑
i=1

Ci
Ti
≤ m (15)

We decompose tasks considering that each processor core
has speed 2. To be able to schedule the decomposed tasks
τ decom, let we need to increase the speed of each processor
core ν times further. That is, we need each processor core
to be of speed 2ν.

On an m-core platform where each processor core has
speed 2ν, let the total density and the maximum density

of task set τ decom be denoted by δsum,2ν and δmax,2ν ,
respectively. From 14, we have

δmax,2ν =
δmax,2

ν
≤ 1

ν
(16)

The value δsum,2ν turns out to be the total density of all
decomposed tasks. By Theorem 2 and Equation 1, the
density of every task τ decom

i on m identical processors each
of speed 2ν is:

δi,2ν ≤
Ci

2ν

Ti − Pi

2

≤
Ci

2ν

Ti − Ti

2

=
Ci

2ν
Ti

2

=
1

ν
.
Ci
Ti

(since Pi ≤ Ti)

Thus, from 15, δsum,2ν =

n∑
i=1

δi,2ν ≤
1

ν

n∑
i=1

Ci
Ti
≤ m

ν
(17)

Note that, in the decomposed task set, every thread of
the original task is a sequential task on a multiprocessor
platform. Therefore, δsum,2ν is the total density of all threads
(i.e. subtasks), and δmax,2ν is the maximum density among
all threads. Thus, by Theorem 4, following is the sufficient
condition for EDF schedulability of the decomposed task set
on m processor cores each of speed 2ν:

δsum,2ν ≤ m− (m− 1)δmax,2ν

We can substitute the values of δsum,2ν (Equation 17) and
δmax,2ν (Equation 16) into this equation, and say that the
task set τ decom is schedulable if

m

ν
≤ m− (m− 1)

1

ν

⇔ 1

ν
+

1

ν
− 1

mν
≤ 1 ⇔ 2

ν
− 1

mν
≤ 1

From the above condition, τ decom must be schedulable if
2

ν
≤ 1 ⇔ ν ≥ 2 ⇔ 2ν ≥ 4

Hence follows the theorem.

V. PARTITIONED DEADLINE MONOTONIC SCHEDULING

Using the same decomposition described in Section III,
we now derive a resource augmentation bound required to
schedule task sets under FBB-FFD (Fisher Baruah Baker -
First-Fit Decreasing) partitioned Deadline Monotonic (DM)
scheduling [10] which the previous work on parallel task
scheduling [4] uses as its underlying scheduling strategy.
However, as was explained earlier, we consider a more gen-
eral task model and a different task decomposition strategy,
and are able to obtain a resource augmentation bound of 5
as shown below.

In partitioned scheduling, tasks are executed only on
their assigned processor cores, and are not allowed to mi-
grate among processor cores. We schedule the decomposed
subtasks using FBB-FFD considering each subtask as a
traditional multiprocessor task. Specifically, the decomposed

subtasks are considered for processor core allocation in
decreasing order of DM priorities, and each subtask is
allocated to the first available core that satisfies the condition
specified in the FBB-FFD algorithm for allocation.

We use an analysis similar to the one used in [4] to derive
the resource augmentation bound as shown in Theorem 6.
The analysis is based on the demand bound function of the
tasks after decomposition.

Definition 5. The demand bound function (DBF), originally
introduced in [11], of a task τi is the largest cumulative
execution requirement of all jobs generated by τi that
have both their arrival times and their deadlines within a
contiguous interval of t time units. For a task τi with a
maximum computation requirement of Ci, period of Ti, and
a deadline of Di, its DBF is given by:

DBF (τi, t) = max

(
0,
(⌊ t−Di

Ti

⌋
+ 1
)
Ci

)

Definition 6. Based upon the DBF function, the load of task
system τ , denoted by λ(τ), is defined as follows:

λ(τ) = max
t>0

n∑
i=1

DBF (τi, t)

t

From Definition 5, for a constrained deadline task τi:

DBF (τi, t) ≤ max

(
0,
(⌊ t−Di

Di

⌋
+ 1
)
Ci

)
≤
⌊
t

Di

⌋
Ci ≤

t

Di
.Ci = δi.t

Based on the above analysis, we now derive an upper
bound of DBF for every task after decomposition. Every
segment of task τi consists of a set of constrained deadline
subtasks after decomposition and, by Lemma 1, the total
density of all subtasks in a segment is at most Ci/2

Ti−Pi/2
. The

constrained deadline subtasks are offset to ensure that those
belonging to different segments of the same task are never
simultaneously active. That is, for each task τi, each segment
(and each of its subtasks) happens only once during the
activation time of τi. Therefore, for decomposed task τ decom

i ,
considering the segment having the maximum density in
place of every segment gives an upper bound on the total
density of all subtasks of τ decom

i . Since, the density δi,j of
any j-th segment of τ decom

i is at most Ci/2
Ti−Pi/2

, the DBF of
τ decom
i over any interval of length t is:

DBF (τ decom
i , t) ≤ Ci/2

Ti − Pi/2
.t

The load of the decomposed task system τ decom is:

λ(τ decom) = max
t>0

n∑
i=1

DBF (τ decom
i , t)

t

 ≤ n∑
i=1

Ci/2

Ti − Pi/2

(18)

Theorem 6. If a synchronous parallel task set τ is schedula-
ble using an optimal algorithm on m unit-speed processor
cores, then its decomposed task set τ decom is schedulable
using FBB-FDD on m identical processors of speed 5.

Proof: According to [10], any constrained deadline
sporadic task set π with total utilization usum(π), maximum
density δmax(π), and load λ(π) is schedulable by FBB-FFD
on m unit-capacity processors if

m ≥ λ(π) + usum(π)− δmax(π)

1− δmax(π)
(19)

We decompose tasks considering that each processor core
has speed 2. To be able to schedule the decomposed tasks
τ decom, let we need to increase the speed of each processor
core ν times further. That is, we need each processor core to
be of speed 2ν. Let the maximum density, total utilization,
and load of task set τ decom be denoted by δmax,2ν , usum,2ν ,
and λ2ν respectively, when each processor core has speed
2ν. From Equation 1:

usum,2ν =

n∑
i=1

Ci

2ν

Ti
=

1

2ν

n∑
i=1

Ci
Ti

=
usum

2ν
(20)

From Equations 1 and 18:

λ2ν ≤
n∑
i=1

Ci

2ν

Ti − Pi

2

≤
n∑
i=1

Ci

2ν

Ti − Ti

2

=
1

ν

n∑
i=1

Ci
Ti

=
usum
ν

(21)
Since the task set τ decom contains sequential tasks, due to

Condition 19, the following is the sufficient condition for
FBB-FFD schedulability of the decomposed task set on m
identical processors each of speed 2ν:

m ≥ λ2ν + usum,2ν − δmax,2ν

1− δmax,2ν
(22)

Using, Equations 21, 20, 16 in Equation 22, task set τ decom

is schedulable if

m ≥
usum

ν + usum

2ν −
1
ν

1− 1
ν

If the original task set τ is schedulable by any algorithm
on m unit-speed processor cores, then usum ≤ m. There-
fore, τ decom is schedulable if

m ≥
m
ν + m

2ν −
1
ν

1− 1
ν

⇐ 2ν − 2 ≥ 3 ⇔ 2ν ≥ 5

Hence follows the theorem.

VI. GENERALIZING TO A DAG TASK MODEL

In the analysis presented so far, we assume that we have
synchronous parallel tasks. That is, there is a synchroniza-
tion point at the end of each segment, and the next segment
starts only after all the threads of the previous segment have
completed. In this section, we argue that even more general
parallel tasks that can be represented as directed acyclic
graphs (DAGs) with unit time nodes, can be easily converted
into synchronous tasks. Therefore, the above analysis holds
for these tasks as well.

In the DAG model of tasks, each job is made up of nodes
that represent work, and edges that represent dependences
between nodes. Therefore, a node can execute only after
all of its predecessors have been executed. We consider the
case where each node represents unit-time work. Therefore,
a DAG can be converted into a synchronous task by simply
adding new dependence edges as explained below.

If there is an edge from node u to node v, we say that u
is the parent of v. Then we calculate the depth, denoted by
h(v), of each node v. If v has no parents, then it is assigned
depth 1. Otherwise, we calculate the depth of v as follows:

h(v) = max
u parent of v

h(u) + 1

Each node with depth j is assigned to segment j. Then
every node of the DAG is considered as a thread in the
corresponding segment. The threads in the same segment
can happen in parallel, and the segment is considered as a
parallel segment of a synchronous task. If there are k > 1
consecutive segments each consisting of just one thread,
then all these k segments are considered as one sequential
segment of execution requirement k (by preserving the
sequence). Figure 3 shows an example, where a DAG
in Figure 3(a) is represented as a synchronous task in
Figure 3(b). This transformation is valid since it preserves
all dependences in the DAG, and in fact only adds extra
dependences.

Upon representing a DAG task as a synchronous task, we
perform the same decomposition proposed in Section III.
The decomposed task set can be scheduled using either
global EDF or partitioned DM scheduling. Note that the
transformation from a DAG task τi to a synchronous
task preserves the work Ci of τi. Hence, the condition∑
Ci/Ti < m used in our analysis still holds. Besides, the

transformation preserves the critical path length Pi of τi and,
hence, the rest of the analysis also holds. Therefore, a set of
DAG tasks can be scheduled with a resource augmentation
of 4 under global EDF scheduling, and of 5 under partitioned
DM scheduling.

VII. RELATED WORK

There has been extensive work on traditional multiproces-
sor real-time scheduling [12]. Most of this work focuses on
scheduling sequential tasks on multiprocessor or multi-core

a

w

c

b

e

d

x

z

y

(a) DAG

a

w

b

c

d x

y

z

e

Segment
3

Segment
1

Segment
4

Segment
2

(b) Parallel synchronous model
Figure 3. DAG to parallel synchronous model

systems. There has also been extensive work on scheduling
of one or more parallel jobs on multiprocessors [13]–[22].
However, the work in [13]–[19] does not consider task
deadlines, and that in [20]–[22] considers soft real-time
scheduling. In contrast to the goal (i.e. to meet all task
deadlines) of a hard real-time system, in a soft real-time
system the goal is to meet a certain subset of deadlines based
on some application specific criteria.

There has been little work on hard real-time scheduling
of parallel tasks. Anderson et al. [23] propose the concept
of a megatask as a way to reduce miss rates in shared
caches on multicore platforms, and consider Pfair scheduling
by inflating the weights of a megatask’s component tasks.
Preemptive fixed-priority scheduling of parallel tasks is
shown to be NP-hard by Han et al. [24]. Kwon et al. [25]
explore preemptive EDF scheduling of parallel task systems
with linear-speedup parallelism. Wang et al. [26] consider a
heuristic for nonpreemptive scheduling. However, this work
focuses on metrics like makespan [26] or total work that
meets deadline [25], and considers simple task models where
a task is executed on up to a given number of processors.

Most of the other work on real time scheduling of parallel
tasks also address simplistic task models. Jansen [27], Lee
et al. [28], and Collette et al. [29] study the scheduling
of malleable tasks, where each task is assumed to execute
on a given number of cores or processors and this number
may change during execution. Manimaran et al. [30] study
non-preemptive EDF scheduling for moldable tasks, where
the actual number of used processors is determined before
starting the system and remains unchanged. Kato et al. [31]
address Gang EDF scheduling of moldable parallel task
systems. They require the users to select at submission time
the number of processors upon which a parallel task will
run. They further assume that a parallel task generates the
same number of threads as processors selected before the
execution. In contrast, the parallel task model addressed in
this paper allows tasks to have different numbers of threads
in different stages, which makes our solution applicable to
a much broader range of applications.

Our work is most related to, and is inspired by, the
recent work of Lakshmanan et al. on real-time scheduling
for a restrictive synchronous parallel task model [4]. In their
model, every task is an alternate sequence of parallel and
sequential segments. All the parallel segments in a task have
an equal number of threads, and that number cannot exceed
the total number of processor cores. They also convert
each parallel task into a set of sequential tasks, and then
analyzes the resource augmentation bound for partitioned
DM scheduling. However, their strategy of decomposition
is different from ours. They use a stretch transformation
that makes a master thread of execution requirement equal
to task period, and assign one processor core exclusively
to it. The remaining threads are scheduled using FBB-FDD
algorithm. Unlike ours, their results do not hold if, in a task,
the number of threads in different segments vary, or exceed
the number of cores. In addition, tasks that can be expressed
as a DAG of unit time nodes cannot be converted to their task
model in a work and critical path length conserving manner.
Therefore, unlike ours, their analysis does not directly apply
to these more general task models.

VIII. CONCLUSION

With the advent of the era of multi-core computing, real-
time scheduling of parallel tasks is crucial for real-time
applications to exploit the power of multi-core processors.
While recent research on real-time scheduling of parallel
tasks has shown promise, the efficacy of existing approaches
is limited by their restrictive parallel task models. To over-
come these limitations, in this paper we have presented new
results on real-time scheduling for generalized parallel task
models. First, we have considered a general synchronous
parallel task model where each task consists of segments,
each having an arbitrary number of parallel threads. We
have then proposed a novel task decomposition algorithm
that decomposes each parallel task into a set of sequential
tasks. We have derived a resource augmentation bound of
4 under global EDF scheduling, which to our knowledge
is the first resource augmentation bound for global EDF
scheduling of parallel tasks. We have also derived a resource

augmentation bound of 5 for partitioned DM scheduling.
Finally, we have shown how to convert a task represented
as a Directed Acyclic Graph (DAG) with unit time nodes
into a synchronous task, thereby holding our results for this
more general task model.

In the future, we plan to consider even more general
DAG task models where each node may have more than
one unit of work, and to provide analysis without requiring
any transformation to a synchronous model. We also plan
to address system issues such as cache effects, preemption
penalties, and resource contention.

ACKNOWLEDGEMENT

This research was supported by NSF under grants CNS-
0448554 (CAREER) and CNS-1017701 (NeTS).

REFERENCES

[1] “Teraflops research chip,” http://techresearch.intel.com/
ProjectDetails.aspx?Id=151.

[2] “CoSy compiler for 96-core multi-threaded array processor,”
http://www.clearspeed.com/newsevents/news/ClearSpeed
Ace 011708.php.

[3] H.-M. Huang, T. Tidwell, C. Gill, C. Lu, X. Gao, and S. Dyke,
“Cyber-physical systems for real-time hybrid structural test-
ing: a case study,” in ICCPS ’10.

[4] K. Lakshmanan, S. Kato, and R. R. Rajkumar, “Scheduling
parallel real-time tasks on multi-core processors,” in RTSS
’10.

[5] “OpenMP,” http://openmp.org.

[6] “Intel R© CilkTMPlus,” http://software.intel.com/en-us/articles/
intel-cilk-plus.

[7] S. Funk, J. Goossens, and S. Baruah, “On-line scheduling on
uniform multiprocessors,” in RTSS ’01.

[8] S. Baruah, “Techniques for multiprocessor global schedula-
bility analysis,” in RTSS ’07.

[9] J. Goossens, S. Funk, and S. Baruah, “Priority-driven schedul-
ing of periodic task systems on multiprocessors,” Real-Time
Syst., vol. 25, no. 2-3, pp. 187–205, 2003.

[10] N. Fisher, S. Baruah, and T. P. Baker, “The partitioned
scheduling of sporadic tasks according to static-priorities,”
in ECRTS ’06.

[11] S. Baruah, A. Mok, and L. Rosier, “Preemptively scheduling
hard-real-time sporadic tasks on one processor,” in RTSS ’90.

[12] R. Davis and A. Burns, “A survey of hard real-time schedul-
ing algorithms and schedulability analysis techniques for
multiprocessor systems,” University of York, Department of
Computer Science, Tech. Rep. YCS-2009-443, 2009.

[13] C. D. Polychronopoulos and D. J. Kuck, “Guided self-
scheduling: A practical scheduling scheme for parallel su-
percomputers,” IEEE Transactions on Computers, vol. C-36,
no. 12, pp. 1425–1439, 1987.

[14] M. Drozdowski, “Real-time scheduling of linear speedup
parallel tasks,” Inf. Process. Lett., vol. 57, no. 1, pp. 35–40,
1996.

[15] X. Deng, N. Gu, T. Brecht, and K. Lu, “Preemptive schedul-
ing of parallel jobs on multiprocessors,” in SODA ’96.

[16] N. S. Arora, R. D. Blumofe, and C. G. Plaxton, “Thread
scheduling for multiprogrammed multiprocessors,” in SPAA
’98.

[17] N. Bansal, K. Dhamdhere, J. Konemann, and A. Sinha, “Non-
clairvoyant scheduling for minimizing mean slowdown,” Al-
gorithmica, vol. 40, no. 4, pp. 305–318, 2004.

[18] J. Edmonds, D. D. Chinn, T. Brecht, and X. Deng, “Non-
clairvoyant multiprocessor scheduling of jobs with changing
execution characteristics,” Journal of Scheduling, vol. 6, no. 3,
pp. 231–250, 2003.

[19] K. Agrawal, Y. He, W. J. Hsu, and C. E. Leiserson, “Adaptive
task scheduling with parallelism feedback,” in PPoPP ’06.

[20] J. M. Calandrino and J. H. Anderson, “Cache-aware real-
time scheduling on multicore platforms: Heuristics and a case
study,” in ECRTS ’08.

[21] J. M. Calandrino, J. H. Anderson, and D. P. Baumberger, “A
hybrid real-time scheduling approach for large-scale multi-
core platforms,” in ECRTS ’07.

[22] J. M. Calandrino, D. Baumberger, T. Li, S. Hahn, and
J. H. Anderson, “Soft real-time scheduling on performance
asymmetric multicore platforms,” in RTAS ’07.

[23] J. H. Anderson and J. M. Calandrino, “Parallel real-time task
scheduling on multicore platforms,” in RTSS ’06.

[24] C.-C. Han and K.-J. Lin, “Scheduling parallelizable jobs on
multiprocessors,” in RTSS ’89.

[25] O.-H. Kwon and K.-Y. Chwa, “Scheduling parallel tasks with
individual deadlines,” Theor. Comput. Sci., vol. 215, no. 1-2,
pp. 209–223, 1999.

[26] Q. Wang and K. H. Cheng, “A heuristic of scheduling parallel
tasks and its analysis,” SIAM J. Comput., vol. 21, no. 2, pp.
281–294, 1992.

[27] K. Jansen, “Scheduling malleable parallel tasks: An asymp-
totic fully polynomial time approximation scheme,” Algorith-
mica, vol. 39, no. 1, pp. 59–81, 2004.

[28] W. Y. Lee and H. Lee, “Optimal scheduling for real-time
parallel tasks,” IEICE Trans. Inf. Syst., vol. E89-D, no. 6, pp.
1962–1966, 2006.

[29] S. Collette, L. Cucu, and J. Goossens, “Integrating job paral-
lelism in real-time scheduling theory,” Inf. Process. Lett., vol.
106, no. 5, pp. 180–187, 2008.

[30] G. Manimaran, C. S. R. Murthy, and K. Ramamritham, “A
new approach for scheduling of parallelizable tasks inreal-
time multiprocessor systems,” Real-Time Syst., vol. 15, no. 1,
pp. 39–60, 1998.

[31] S. Kato and Y. Ishikawa, “Gang EDF scheduling of parallel
task systems,” in RTSS ’09.

