
Submodular Game for Distributed Application
Allocation in Shared Sensor Networks

Chengjie Wu, You Xu, Yixin Chen, Chenyang Lu
Department of Computer Science & Engineering

Washington University in St. Louis
{wu, yx2, chen, lu}@cse.wustl.edu

Abstract—Wireless sensor networks are evolving from single-
application platforms towards an integrated infrastructure
shared by multiple applications. Given the resource constraints
of sensor nodes, it is important to optimize the allocation of
applications to maximize the overall Quality of Monitoring
(QoM). Recent solutions to this challenging application allocation
problem are centralized in nature, limiting their scalability and
robustness against network failures and dynamics. This paper
presents a distributed game-theoretic approach to application
allocation in shared sensor networks. We first transform the
optimal application allocation problem to a submodular game
and then develop a decentralized algorithm that only employs
localized interactions among neighboring nodes. We prove that
the network can converge to a pure strategy Nash equilibrium
with an approximation bound of 1/2. Simulations based on three
real-world datasets demonstrate that our algorithm is competitive
against a state-of-the-art centralized algorithm in terms of QoM.

I. INTRODUCTION

Traditionally, wireless sensor networks (WSNs) are used
as specialized platforms where only a single application is
deployed on each sensor. Recently, large-scale, integrated
WSNs that support multiple applications start to emerge.
Many application domains such as urban sensing [1], building
automation and environmental monitoring [2] have already
adopted the integrated WSN paradigm to support multiple
applications. Compared to separate application-specific sensor
networks, a shared WSN can be more cost effective and more
flexible as it enables resource sharing among applications and
dynamic resource allocation in response to changes in the
environment and user needs.

Severe resource constraints limit the allocation of all possi-
ble applications to sensors in a shared WSN. For example, the
TelosB mote [3], a representative sensor platform, only has 10
KB of RAM, a 250 Kbps radio, and a 16-bit CPU running
at 8 MHz. On the other hand, the Quality of Monitoring
(QoM) of applications depends on application allocations.
Therefore, it is important to optimize the allocation of multiple
applications among sensor nodes in order to maximize the
overall QoM, subject to resource constraints. This problem is
challenging because it is essentially a discrete optimization
with an exponentially large solution space.

Some recent works utilize the submodularity of the QoM
function to tackle this discrete optimization problem. Sub-
modularity is an important property of the QoM functions for

networked sensing applications. Intuitively, a function f that
maps a subset of a set S to a real value is submodular if it
has a diminishing return property, i.e., adding an element to a
smaller subset of S makes a bigger difference to the function
values than adding it to a larger subset of S. The submodularity
of QoM is due to the inherent property that sensor readings
from different nodes are often correlated. For instance, since
the temperature readings from different nodes in the same
room are correlated with each other, allocating a new node
to a temperature monitoring application results in diminishing
improvement to the QoM as the set of nodes allocated to
the application grows. Submodularity of sensor allocation for
monitoring temperature [4] and water quality [5]–[7] has been
observed in previous studies of real-world datasets.

Many existing works centered around submodular opti-
mization have been proposed for optimization problems in
sensor networks. Recent theoretical works also show approxi-
mation algorithms that can achieve a (1−1/e)-approximation
bound [8]. Xu et al. [9] proposed a greedy algorithm and
achieved a 1/3 approximation bound. Submodular optimiza-
tion approaches are also used in sensor selection and place-
ment applications [6], [7]. However, all these existing sub-
modular optimization approaches are essentially centralized
solutions. For WSNs, a centralized algorithm implies there is
either a node or gateway that maintains the global information
of the network.

A centralized approach is not desirable for WSNs due to
its limitations in scalability and fault tolerance. First, a shared
WSN is usually of large scale in terms of the number of nodes
and hop counts. Hence, it is inefficient or even impossible
to achieve global information sharing that is required by
centralized optimization algorithms. Second, in a centralized
approach, much of the computation and communication hap-
pens on a single point resulting in a single point of failure. To
address the limitations of centralized approaches, we study dis-
tributed optimization approaches for application allocations.
Meanwhile, we still exploit the submodularity property of
QoM functions to achieve desirable approximation bounds.

In this paper, we provide several major theoretical results: 1)
We propose the covariance cover function as a new QoM met-
ric that is amenable to distributed optimization; 2) We show
that the optimal multi-application allocation problem with
covariance cover as objective function is a submodular op-
timization problem with multiple knapsack constraints; 3) We

propose a game theory based distributed algorithm for solving
this submodular optimization problem and prove that our
algorithm can achieve a 1/2-approximation bound when each
sensor achieves optimal allocation of applications. We also
prove our algorithm can achieve a 1/(1 + β)-approximation
bound when each sensor achieves a 1/β-approximate allo-
cation of applications. Simulations based on three real-world
datesets demonstrate that our distributed algorithm can achieve
comparable QoM as a state-of-the-art centralized algorithm
[9], while scaling effectively in terms of both execution time
per node and the communication overheads.

II. RELATED WORK

Originated from centralized optimization, subgradient meth-
ods have been used to optimize problems where the gradients
of the objectives are hard to obtain, while the subgradients
of objective functions with respect to a subset of variables
are easy to obtain [10], [11]. The subgradient optimization
method can be used as a distributed optimization algorithm
for problems in WSNs, in which each sensor node optimizes
the objective function distributively using its own subgradient
value. However, the subgradient method is not suitable for the
multi-application allocation problem in a large-scale, multi-
hop WSN, due to the fact that in each iteration of the
algorithm, it is still required to propagate the solution for the
subsequent subgradient calculation. That is to say, although the
optimization is localized to each sensor, global communication
is still required.

Game-theoretic approaches have been proposed to address
the above issue. In these approaches, communications are
made only between certain sensors in a user-defined neighbor-
hood. Another unique property of game-theoretic approaches
is that they do not assume that agents (in this case, sensor
nodes) work cooperatively. Instead, selfish sensor nodes op-
timize a local version of the objective functions, often called
“utilities” or “private utilities”, independently, until none of
them can further improve their private utilities by making a
different decision.1 When these utilities are carefully designed
to reflect the objective function, the overall objective function,
also called “social utility”, is subsequently optimized by these
noncooperative agents [12].

When the social and private utilities are carefully designed,
game-theoretic approaches guarantee a constant optimization
bound [12]–[14]. Since the utility system decides the nature
of the game, needless to say, for game-theoretic approaches to
work for multi-application allocation problems, designing the
utility system is critical. Specifically, in a distributed solution,
a utility system that is easy to calculate and has no global
information propagation requirements is desirable. In other
words, in the application allocation problem, a utility system
should reflect the QoM value based on the decisions of each
sensor, while it does not require global communication in the
network.

1In Game Theory, a state where no player can improve its utility is called
an equilibrium state.

Previous works proposed different QoM formulations [5],
[9], [15], including variance reduction and mutual information
gain. However, neither is suitable as the objective function in
a distributed game-theoretic approach, which requires that a
sensor’s utility is independent of other sensors that are not
in its neighborhood. This condition is violated when using
variance reduction or mutual information as QoM, because
one sensor’s utility of allocating an application is related to
all sensors that carry the application. We address this issue by
proposing a new QoM metric that is submodular and suitable
for game-theoretic distributed optimization while serving as an
effective proxy for variance reduction in QoM optimization.

III. PROBLEM FORMULATION

In this section, we first review the variance reduction
QoM formulation. After discussing the disadvantages of using
variance reduction in distributed algorithms, we propose a
new QoM metric called covariance cover that is amenable to
distributed solutions. In the end, we formulate the application
allocation problem in shared WSNs using covariance cover as
QoM metric.

A. QoM Formulation

Variance reduction is commonly used to measure QoM in
WSN applications [5], [9]. Assuming sensor readings follow a
Gaussian Process, the variance reduction measures how much
the variance of the readings from the unallocated sensors.

Variance reduction is calculated based on covariance. As-
suming K is the covariance matrix for sensor nodes, and for
two subsets of sensor nodes G,H ⊆ V , the covariance matrix
of G and H is denoted by KGH , where its rows corresponding
to G and columns corresponding to H extracted from K. For
a given set G with application allocated, the variance of the
unassigned set Ḡ = V \G is

σ2
Ḡ|G = tr(KḠḠ)− tr(KḠGK

−1
GGKGḠ),

where tr() is the trace of a matrix.
In this application allocation problem, the goal is to mini-

mize the variance of Ḡ given G such that the quality of sensing
is maximized. Namely, we want to maximize the negation of
the variance. Given tr(K) = tr(KGG) + tr(KḠḠ), variance
reduction for one application is:

QV R = tr(KGG) + tr(KḠGK
−1
GGKGḠ) (1)

Variance reduction is just one of the many possible ways
to formulate QoM. There is an inherent disadvantage of
using variance reduction for our problem. It is not feasible
for a sensor node with limited memory resource to store a
kernel matrix that is quadratic to the size of the network,
and it is expensive to compute variance reduction since it
involves matrix multiplication and inversion. To overcome this
inherent disadvantage, we decompose the variance reduction
and propose a new formulation which is more amenable to
distributed approaches.

We begin with introducing the network model. A network
consists of a group of sensors {1, 2, · · ·n}. Each sensor node

can be presented as a vertex. For a pair of sensors i and j, if
each of them is in the other’s communication range, i and j are
defined as a pair of neighbors. The network can be presented as
a graph G = (V,E), where V = {1, 2, · · · , n} and (i, j) ∈ E
if and only if i and j are a pair of neighbors. Now we will
decompose the variance reduction based on two assumptions.

Theorem 1. Variance reduction formulation (1) is equivalent
to ∑

i∈G
Kii +

∑
(i,j)∈E,i∈G or j∈G

K2
ij ,

if (I) the covariance of any two nodes is nonzero if and only if
they are a pair of neighbors, and (II) any two allocated nodes
are not a pair of neighbors.

Proof: Let us first simplify the variance reduction formulation.
Since any two allocated nodes are not neighbors of each other,
and only neighbors have nonzero variance, we can prove KGG

is an identity matrix. It immediately follows that

QV R = tr(KGG) + tr(KḠGK
−1
GGKGḠ)

=
∑
i∈G

Kii +
∑

i∈G,j∈Ḡ

K2
ij .

Since only a pair of neighbors have nonzero covariance,

QV R =
∑
i∈G

Kii +
∑

i∈G,j∈Ḡ,(i,j)∈E

K2
ij .

We assume two allocated nodes are not neighbors, which
means if (i, j) ∈ E, i ∈ G, then j ∈ Ḡ. It follows

QV R =
∑
i∈G

Kii +
∑

(i,j)∈E,i∈G or j∈G

K2
ij .

One question raises naturally: how realistic are the as-
sumptions? We argue that the proposed two assumptions,
although sometimes violated, provide good approximations of
the real-world scenarios. First, it is reasonable to assume a
pair of nearby sensors have larger covariance. For example,
the temperature measurements of two different sensors in
the same office room are more correlated than two sensors
in different rooms. Second, since our applications have the
inherent property of submodularity, allocating two neighboring
nodes simultaneously typically does not give much gain in
terms of QoM. To maximize QoM, a good solution should
naturally allocate nodes that have unallocated nodes as neigh-
bors. Actually, our submodular game algorithm is not limited
by these two assumptions, it can handle situations when
assumptions do not hold.

We name the new QoM formulation covariance cover.
Denoting τij = K2

ij as the weight of edge (i, j), and τii = Kii

as the weight of node i, we define the covariance cover
formulation as

QCC =
∑
i∈G

τii +
∑

(i,j)∈E,i∈G or j∈G

τij . (2)

B. Application Allocation Problem Formulation

Given QoM metric as covariance cover, we want to further
formulate the application allocation problem in shared sensor
networks.

When there are multiple applications P = {1, 2, · · · , p}
with weights {w1, w2, · · · , wp}, we want to maximize the
summation QoM of all applications

∑p
t=1 w

tQt, where Qt

is the covariance cover for application t.

Qt =
∑
i∈Gt

τ tii +
∑

(i,j)∈E,i∈Gt or j∈Gt

τ tij

This problem is challenging because of critical resource
constraints, e.g., CPU and memory constraints. For each sen-
sor, the total memory and CPU consumed by all applications
can not exceed its limits. Therefore, suppose each node has m
resource constraints R = {1, 2, · · · ,m}, the capacity of node
i on resource k is Ci,k, and application t consumes cti,k units
of resource k on node i, the constrained optimization problem
can be formulated as:

max QoM =
∑
t∈P

wtQt

Qt =
∑
i∈Gt

τ tii +
∑

(i,j)∈E,i∈Gt or j∈Gt

τ tij

s.t.
∑
t|i∈Gt

cti,k ≤ Ci,k, ∀i ∈ V,∀k ∈ R

here Gt is the set of nodes which are assigned application t.
It is easy to see that all resource constraints here are knap-

sack constraints. This type of constraint formulation also can
be used to characterize various communication patterns among
nodes, such as the pattern in a data collection application that
collects data from every node on the routing tree.

IV. SUBMODULAR GAME

In this section, we will formulate a non-cooperative game
based on the covariance cover formulation discussed in the
previous section, which leads to a completely distributed
algorithm. We introduce typical terminologies in game theory
at first.

A. Submodular Game Formulation

Suppose we have n sensor nodes, and each sensor node i
in the network is an agent i in the game. For each sensor, its
strategy ai is the subset of applications that can run on it.

ai = {t| application t runs on sensor i}
= {t|i ∈ Gt,∀t ∈ P}.

Under the resource constraint we discussed earlier, the strategy
set Ai of player i is

Ai = {ai|
∑
t∈ai

cti,k ≤ Ci,k,∀k ∈ R},

A pure strategy is one in which each agent decides to carry
out a specific strategy. In game theory, mixed strategy is also
widely discussed. However, we only discuss pure strategy in

this paper, because in reality of sensor networks, it is hard
to implement strategies with probability distribution. Also, we
prove that our game has at least one Nash equilibrium with
pure strategies. We denote the strategy space of the game as
A = A1 ×A2 × · · · × An.

A game is always defined on a utility system. To build
the utility system, we need to define the utility function at
first. Given a strategy profile A = (a1, a2, · · · , an) ∈ A,
let A ⊕ a′i denote the strategy profile obtained if agent i
changes its strategy from ai to a′i. Formally, A ⊕ a′i =
(a1, · · · , ai−1, a

′
i, · · · , an).

The goal of our game is to maximize the social utility γ :
2V → R defined on pure strategy profile A = {a1, · · · , an}
as

γ(A) =
p∑
t=1

γt(A)

=
p∑
t=1

wt(
∑

t∈ai or t∈aj ,(i,j)∈E

τ tij +
∑

t∈ai,i∈V
τ tii)

=
p∑
t=1

wt(
∑

(i,j)∈E,i∈Gt or j∈Gt

τ tij +
∑
i∈Gt

τ tii).

(3)

Remind Gt is the set of nodes who are assigned application
t.

For each agent i, we define a private utility φi : 2V → R
as:

φi(A) =
∑
t∈ai

φti(A)

=
∑
t∈ai

wt(τ tii +
∑
j∈Ni

τ tij
1 + δj∈Gt

)
(4)

where Ni = {j|(i, j) ∈ E} is sensor i’s neighborhood. For
edge (i, j), if not only i, but also j runs application t, (i, j)’s
edge weight τ tij need to be equally shared by both i and j.
Otherwise, sensor i will account all (i, j)’s edge weight into
its private utility.

The goal of each sensor is, therefore, to select a strategy in
order to maximize its private utility under resource constraints.
Clearly, such strategies may not produce a good solution with
respect to the social utility γ. However, we will show that the
strategies sensors finally select will result in a reasonable good
social utility γ in next section.

To localize the optimization problem to each sensor, given
strategies of its neighbors fixed, we redefine sensor i’s private
utility φi(A) as its utility function ui(xi), which is a function
of its own decisions xi. Its decision xi = {x1

i , · · · , x
p
i } is

redefined from its strategy ai, where xti = 1 means t ∈ ai.

ui(xi) =
p∑
t=1

wt[τ tii +
∑
j∈Ni

τ tij
1 + δj∈Gt

]xti

We denote Ωti = [τ tii +
∑
j∈Ni

τt
ij

1+δj∈Gt
] as a constant,

assuming strategies of i’s neighbors are given. To maximize

its utility function, sensor node i needs to solve a integer
programming problem:

Max ui(xi) =
p∑
t=1

wtΩtix
t
i

where xti ∈ {0, 1},∀t ∈ P

s. t.
p∑
t=1

cti,k x
t
i ≤ Ci,k ∀k ∈ R

(5)

Actually, this is a typical multidimensional knapsack problem.
There is a rich package of literature to solve this problem.
We propose two algorithms based on p, which is the number
of applications. If p is not larger than Tp, our solution will
adopt a naive enumeration algorithm. Basically, it enumerates
all possible application assignments and returns an optimal
solution. Otherwise, our solution will adopt a polynomial
time approximate algorithm, which is proven to have a 1

1+m
approximation bound (section 9.4.2 of [16]), where m = |R|
is the number of resource constraints. Here Tp is the threshold
for p, we set it to 5 in our implementation. We show the sketch
of our solution for problem (5) in Algorithm 1.

Algorithm 1: Algorithm for knapsack problem (5)

Set x̂ = {0, · · · , 0};
if p ≤ Tp then

Adopt the Enumeration Algorithm;
Enumerate x ∈ {0, 1}p, return optimal solution x̂.

else
Adopt the Approximation Algorithm;
Relax problem (5) to a linear programming problem
and compute an optimal solution xLP of the
LP-relaxation.
Set I = {t|xtLP = 1}
Set F = {t|0 < xtLP < 1}
Return x̂ = max{

∑
t∈I w

t,max{wt|t ∈ F}}
end

Now we analyze computational cost of our algorithm. If
p ≤ Tp, the time complexity is O(

(
p
d

)
) where d is the

maximum number of applications that can be allocated on
one node. And if p is larger than Tp, the relaxed linear
programming (LP) problem is significantly simplified due
to the small numbers of resource constraints as well as
applications. The number of resource constraints is usually no
more than 3 (e.g., memory, CPU, and bandwidth). The number
of applications is also small due to the limited resources
available per node. Our algorithm employs an efficient and
practical solution as follows. We solve the dual problem
of the aforementioned LP problem which only has three
variables (the shadow prices of memory, CPU and bandwidth
constraints) and p constraints (p is the number of applications).
Even a naive LP solver that enumerates all possible extreme
points (each of the three constraints determines one extreme
point) and finds the best feasible one has the computational
complexity O(p

(
p
3

)
) = O(p4), and the memory requirement

of the naive enumeration algorithm is O(1). Either way, the
cost of each individual multidimentional knapsack problem is
O(pd), where d is a small integer.

B. Submodular Game Algorithm

Now we discuss our distributed submodular game algorithm.
In the beginning stage, sensor nodes in the network need to
get two key parameters about applications set P : 1) types
of required sensor readings; 2) the frequency of each sensor
reading. These two key parameters are distributed to the
network from a central facility like base station. After this
stage, no central facility is needed in the algorithm, so our
algorithm is fully distributed.

Algorithm 2: Game algorithm for sensor node i

initialization;
• i measures sensor readings for each application t;
• i broadcasts all sensor readings in its neighborhood;
• i calculates τ tii and τ tij for every neighbor j;

if Timer Λi fires then
if receiving strategy changes from neighbors then

i runs algorithm 1, output x̂→ strategy;
if strategy changes then

i broadcasts its strategy in neighborhood;
end

end
end

In the initialization stage, each node measures sensor read-
ings for a certain interval and broadcasts sensor readings in
its neighborhood. Based on neighbor j’s readings, node i can
calculate the covariance between i and j as well as τ tij .

Algorithm 2 shows the detailed decision-making procedure
for each sensor. In each round of the game, nodes share the
same time interval T . Each node generates a random number
Λi (Λi < T) as a timer using a unique seed, such that two
timers will not fire at the same time. Each timer Λi will fire
once and only once during each time interval T for sensor node
i to solve the allocation problem (5) locally. If a new strategy
is generated, node i will broadcast it in the neighborhood.
Otherwise i will keep quiet. Each sensor node i also receives
messages from its neighbors about their updated strategies.
The algorithm terminates when no strategy changes are made
in a round.

Here we analyze the efficiency of our game algorithm.
From the computational cost perspective, we already give the
computational cost of each node in each round as O(pd). Since
both p and d are small integers, it is reasonable to say the
computational cost is acceptable on a sensor node with limited
resources. From a network perspective, we want to analyze
the communication cost. In each round, sensor node i needs
to receive messages from all its neighbors and broadcast its
own strategy in its neighborhood if necessary. We denote the
Expected Transmission Count (ETX) of link e is νe. Since
sensor node i broadcasts in the neighborhood, in the worst

case, the number of messages it needs to send is the maximum
of all the ETXs in its neighborhood ζi = maxj∈Ni

ν(i,j). So
the overall number of packets sensor i sends in the game is
lower than κζi, given κ is the number of overall number of
rounds. Because κ is always a small number (less than 12)
based on our evaluation, the communication cost is relatively
small.

V. CONVERGENCE AND APPROXIMATION BOUND

In this section, we first show the social utility (3) is
submodular. Then we prove our submodular game (γ,∪i∈V φi)
defined in (3) and (4) can converge to a pure strategy Nash
equilibrium with an approximation bound of 1

2 , if sensors
use the enumeration algorithm to solve the multidimensional
knapsack problem (5). If sensors use the 1

1+m -approximate
solution for the knapsack problem, the game can converge to
a (1+m)-approximate pure strategy Nash equilibrium and the
approximation bound is 1

2+m , where m is number of resource
constraints.

A. Submodularity

Definition 1. (Submodularity) Let V be a finite set, a function
f : 2V → R is submodular if for any A ⊆ B ⊆ V and
x ∈ V −B, f(B ∪ {x}) ≤ f(A ∪ {x}).

Recall that we defined the social utility (3) as a function
of pure strategy profiles in the last section. We redefine the
social utility here as a function of the set of sensors that we
allocate applications on: γ =

∑p
t=1 w

tQt(Gt), where

Qt(Gt) =
∑

{(i,j)|i∈Gt or j∈Gt}

τ tij +
∑
i∈Gt

τ tii.

This definition is equivalent to the one we defined in (3), but
it is now defined on the set of sensors. Based on this set based
definition, we can prove the social utility γ is submodular.

Theorem 2. The social utility γ is submodular.

Proof: Since γ =
∑p
t=1 w

tQt(Gt), we only need to show
Qt(Gt),∀t ∈ P is a submodular function. By definition, we
need to prove: if A ⊆ B ⊆ V and x ∈ V −B, f(B ∪ {x}) ≤
f(A ∪ {x}).

If x ∈ B, it is obvious that Qt(B ∪ {x}) − Qt(B) = 0 ≤
Qt(A ∪ {x})−Qt(A).

If x /∈ B, it follows:
A ⊆ B

⇒ {(i, k)|i = x& k /∈ B} ⊆ {(i, k)|i = x& k /∈ A}
⇒

∑
i=x& k/∈B

τ tik ≤
∑

i=x& k/∈A

τ tik

⇒ Qt(B ∪ {x})−Qt(B) ≤ Qt(A ∪ {x})−Qt(A)

B. Convergence and Pure Nash Equilibrium

Now we will discuss the convergence of our game. By
defining a potential function, we show the increase of each
agent’s private utility will lead to the increase of the potential
function. Then we can prove our game will converge at a pure
strategy Nash equilibrium. Here we assume our Submodular

Game Algorithm (Algorithm 2) is using the enumeration
algorithm.

Definition 2. (Pure Strategy Nash Equilibrium) A pure
strategy profile A ∈ A is a pure strategy Nash equilibrium
if no agent has an incentive to change its strategy. For any
agent i,

∀a′i ∈ Ai, φi(A⊕ a′i) ≤ φi(A).

Equivalently, given the other agents’ strategies, ai is the best
response of agent i.

Theorem 3. A pure strategy Nash equilibrium always exists
for the utility system (γ,∪iφi) we defined in (3) and (4). And
Submodular Game Algorithm (Algorithm 2) converges to a
pure strategy Nash equilibrium.

Proof: The proof starts from defining the potential function
of the game. We define the potential function ψ for a strategy
profile A as

ψ(A) =
p∑
t=1

wt(
∑

i∈V,t∈ai

τ tii +
∑

(i,j)∈E,t∈ai or t∈aj

nt
(i,j)∑
l=1

τ tij
l

)

where nt(i,j) is the number of agents which are assigned
application t as well as the end points of edge (i, j). nt(i,j)
is 2 if both i and j are assigned application t, and it is 1 if
only one of i and j is assigned the application t.

Assume sensor i changes its strategy from ai to a′i, as a
result the strategy profile of the game changes from A to A′.
Here ai is the set of applications which are assigned to sensor
i in original strategy profile A, and a′i is that in new strategy
profile A′. Let G = ai − a′i and H = a′i − ai. We use Ei to
denote the set of edges which coincide with sensor i. Since
the change only happens on node i and edges sit on i, we will
ignore other nodes and edges in following proof.

ψ(A′)− ψ(A)

=
∑
t∈a′

i

wtτ tii −
∑
t∈ai

wtτ tii +

∑
j∈Ni

∑
t∈H

wt
τ tij

nt(i,j) + 1
−
∑
j∈Ni

∑
t∈G

wt
τ tij
nt(i,j)

;

φi(A′)− φi(A)

=
∑
t∈a′

i

wtτ tii −
∑
t∈ai

wtτ tii +

∑
t∈H

wt
∑
j∈Ni

τ tij
nt(i,j) + 1

−
∑
t∈G

wt
∑
j∈Ni

τ tij
nt(i,j)

Obviously, ψ(A′) − ψ(A) = φi(A′) − φ(A), we prove that
the increase of the private utility of i is exactly the same as
increase of the potential function of the game.

Once each individual sensor improves its private utility, the
potential function ψ of the game also gets increased. Since
the maximum value of this potential function is finite, the
algorithm will converge in finite rounds.

C. Valid Utility Game and Approximate Nash Equilibrium

Now we want to prove our submodular game (γ,∪i∈V φi)
is a valid utility system.

Definition 3. (Utility System) [12] A game is called a utility
system if and only if the private utility of an agent is at least as
great as the loss in social utility resulting from the agent drop-
ping out of the game. That is, the game (γ,∪iφi) is a utility
system if and only if it has the property φi(A) ≥ γ′ai

(A⊕∅i).

Definition 4. (Valid Utility System) [12] A utility system is
said to be valid if and only if the sum of private utilities of the
agents is at most the social utility. That is, the utility system
(γ,∪iφi) is a valid utility system if and only if it has the
property

∑n
i φi(A) ≤ γ(A).

We want to prove that the game we defined in (3) and (4) is
a valid utility system. At first, we prove it is a utility system.

Theorem 4. The game (γ,∪iφi) defined in (3) and (4) is a
utility system.

Proof:

γ′ai
(A⊕ ∅i)

= γ(A)− γ(A−i ⊕ ∅i)
=

∑
t∈ai

wt(
∑

j∈Ni|t/∈aj

τ tij + τ tii)

≤
∑
t∈ai

wt(
∑

j∈Ni|t/∈aj

τ tij +
∑

j∈Ni|t∈aj

τ tij
2

+ τ tii)

= φi(ai).

Theorem 5. The utility system (γ,∪iφi) defined in (3) and
(4) is valid.

Proof: We need to prove the utility system (γ,∪iφi) has the
property

∑
i∈V φi(A) ≤ γ(A).

First, we define the set of covered edges for application t
as Et = {(i, j)|i ∈ Gt or j ∈ Gt}. Equation (3) shows that
each e = (i, j) ∈ Et contributes τ tij to γ(A). We use a vector
(ξi, ξj) to denote e’s contribution to φi(A) and φj(A). There
are three cases here:

(ξi, ξj) =


(τ tij , 0), if i ∈ Gt, j /∈ Gt

(0, τ tij), if i /∈ Gt, j ∈ Gt

(1
2τ

t
ij ,

1
2τ

t
ij), if i ∈ Gt, j ∈ Gt

Since e’s contribution to γ(A) equals to the sum of its
contribution to φi(A) and φj(A), after we sum up all e ∈ E,∑

t∈P
wt

∑
(i,j)∈E,i∈Gt or j∈Gt

τ tij =
∑
i∈V

(
∑
t∈ai

wt
∑
j∈Ni

τ tij
nte

).

Now we consider contribution of nodes, it is obviously that∑
t∈P

wt
∑
i∈Gt

τ tii =
∑
i∈V

∑
t∈ai

wtτ tii.

Combining both contribution of edges and nodes,

γ(A) =
∑
i∈V

φi(A).

We cite below an important result on valid game [12].

Lemma 1. Let γ be a non-decreasing, submodular set func-
tion. If (γ,∪iφi) is a valid utility system then for any pure
strategy Nash equilibrium A∗ ∈ A, we have γ(A∗) ≥ 1

2OPT ,
where OPT is the optimal social utility.

Combining Theorem 2, Theorem 3, Theorem 5 and
Lemma 1, we get following theorem.

Theorem 6. For the submodular game (γ,∪iφi) we defined
in (3) and (4), there exists at least one pure strategy Nash
equilibrium. And for its any pure strategy Nash equilibrium
A∗ ∈ A, we have γ(A∗) ≥ 1

2OPT .

Now we consider the case in which each sensor runs the
approximation algorithm and can only get a 1

β approximate
solution instead of optimal solution for the multidiminutional
knapsack problem. 1

β approximate solution (β > 1) means the
solution is not less than 1

β of the optimal solution. We can
prove that our algorithm can achieve a β-approximate Nash
Equilibrium.

Definition 5. (β-approximate Nash Equilibrium) A pure
strategy profile A ∈ A is a β-approximate Nash equilibrium
if no agent can find a better alternative pure strategy in which
its private utility is more that β times better than its current
private utility. That is for any agent i,

∀a′i ∈ Ai, φi(A⊕ a′i) ≤ (1 + β)φi(A)

Theorem 7. For the submodular game defined in (3) and
(4), Submodular Game Algorithm (Algorithm 2) with the 1

β -
approximation algorithm converges to a β-approximate Nash
equilibrium A ∈ A.

Proof: The proof follows the same way of theorem 3. By
bounding the value of the potential function, we can prove
out Submodular Game Algorithm can reach a β-approximate
Nash equilibrium.

We cite the following important result on approximate Nash
equilibria [12].
Lemma 2. Let γ be a non-decreasing, submodular set func-
tion, and (γ,∪iφi) be a valid utility system. In any β-
approximate Nash equilibrium A ∈ A we have γ(A) ≥

1
1+βOPT , where OPT is the optimal social utility.

Theorem 8. For the submodular game defined in (3) and
(4), Submodular Game Algorithm (Algorithm 2) with a β-
approximate solution converges to a β-approximate Nash
equilibrium A ∈ A, and we have γ(A) ≥ 1

1+βOPT , where
OPT is the optimal social utility.

Theorem 8 follows Theorem 5, Theorem 7 and Lemma 2.
In our implementation, we use a 1

1+m -approximation al-
gorithm, so our Submodular Game Algorithm can converge
to a (1 + m)-approximate Nash equilibrium with an 1

2+m
approximation bound.

VI. EVALUATION

In this section, we evaluate our Submodular Game Algo-
rithm (SG) by comparing it against a state-of-the-art central-
ized optimization algorithm Fractional Relaxation Greedy
(FRG) [9]. We conduct simulations on three real world
datasets:

Intel dataset is collected in Intel Berkley lab [17]. 54
Mica2Dot sensor nodes with weather boards were used to
collect topology information along with humidity, temperature
and light values. The data collection last for more than one
month at a sampling period of 31 seconds. In our evaluation,
we generate the covariance matrices using data collected from
20 nodes in one day.

DARPA dataset is collected in the DARPA SensIT vehicle
detection experiments [18]. 75 WINS NG 2.0 nodes are
deployed to detect vehicles driving through several intersecting
roads in 29 Palms, CA. Each WINS NG 2.0 node is equipped
with three sensing modalities: acoustic (microphone), seismic
(geophone) and infrared (polarized IR sensor). All nodes are
deployed in an area of approximately 900 × 300m2. In our
evaluation, we use acoustic and seismic readings from 23
nodes in the dataset to generate covariance matrices.

BWSN dataset is acquired by running simulations on a
129-node sensor network used in Battle of the Water Sensor
Networks (BWSN) [19]. We use the ”bwsn-utilities” [20]
program to simulate 10000 random injection events to this
network for a duration of 96 hours and use the generated
event detection data to calculate the covariance matrices. We
use two event injection strategies to build two sets of data as
two applications.

For each dataset, we can calculate the covariance matrices
based on the sensor readings. The Packet Reception Ratio
(PRR) of each link is included in the Intel dataset. We generate
PRR for DARPAR and BWSN datasets based on location
information of sensors following the way proposed in [21].
We then generate different network topologies by assigning
different PRR bounds. Only links with PRR higher than the
PRR bound is used for communication. In our simulations, we
repeat Algorithm 2 in Section IV 10 times for each network
topology. Because the number of applications is at most 3 in
our simulations, we employ naive enumeration to solve the
multidimensional knapsack problem (5) on each sensor node.
As we proved in Theorem 6, SG will terminate at a pure
strategy Nash equilibrium and the approximation bound is no
less than 1

2 . We implemente our SG algorithm in Matlab. All
results are gathered on a Macbook Pro machine with CPU
frequency at 2.4GHz and 4GB memory.

Figure 1 analyzes the behavior of SG. Here we define
covariance cover ratio as the ratio between covariance cover
achieved by the algorithm and the maximum covariance cover
in the network. Since searching an optimal solution is too
computational expensive, to assess the tightness of our bound,
we compare our solution with the maximum covariance cover,
i.e., the sum of all edge weights and node weights in the
network. Figure 1(a) shows that the covariance cover of our

0.35 0.30 0.25 0.20 0.15 0.1
0

0.25

0.5

0.75

1

 C
o

v
a
r
ia

n
c
e

 C
o

v
e

r
 R

a
ti

o

 PRR Bound

 Intel

 DARPA

 BWSN

(a) Covariance Cover Ratio

0.35 0.30 0.25 0.20 0.15 0.1
0

1

2

3

4

5

6

 N
u

m
b

e
r
 o

f
R

o
u

n
d

s

 PRR Bound

 Intel

 DARPA

 BWSN

(b) Number of Rounds

0.35 0.30 0.25 0.20 0.15 0.1
0

2

4

6

8

10

12

 N
u

m
b

e
r

o
f

M
e
s

s
a
g

e
s

 PRR Bound

 Intel

 DARPA

 BWSN

(c) Number of messages per node

Fig. 1. Game Behavior Analysis

0.35 0.30 0.25 0.20 0.15 0.1
0

20

40

60

80

100

120

 Q
o

M

 PRR Bound

 SG VR

 FRG VR

 SG CC

 FRG CC

(a) Intel dataset

0.35 0.30 0.25 0.20 0.15 0.1
0

10

20

30

40

50

60

 Q
o

M

 PRR Bound

 SG VR

 FRG VR

 SG CC

 FRG CC

(b) DARPA dataset

0.35 0.30 0.25 0.20 0.15 0.1
0

50

100

150

 Q
o

M

 PRR Bound

 SG VR

 FRG VR

 SG CC

 FRG CC

(c) BWSN dataset

Fig. 2. QoM Performance Analysis

0 5 10 15 20 25
0

5

10

15

20

25

30

 Q
o

M

 Number of allocated nodes

 Variance Reduction

 Covariance Cover

(a) Intel dataset

0 5 10 15 20 25
0

10

20

30

40

 Q
o

M

 Number of allocated nodes

 Variance Reduction

 Covariance Cover

(b) DARPA dataset

0 50 100 150
0

50

100

150

 Q
o

M

 Number of allocated nodes

 Variance Reduction

 Covariance Cover

(c) BWSN dataset

Fig. 3. Comparison between VR and CC

solution is consistently no less than half of the maximum
covariance cover, which means our solution is no less than
half of the optimal solution. Results in Figure 1(a) indicates
the tightness of our 1

2 bound.
Figure 1(b) shows the maximum number of rounds for SG to

converge is below 6 across all cases in all three real-world data
sets. The communication cost of our algorithm is evaluated in
Figure 1(c). It shows the average number of messages sent
per node. As each sensor node has more neighbors with a
lower PRR threshold, the average number of messages sent
by each node increases from 2 to 10. Our results show that
the communication cost required by SG in terms of number
of packets is moderate.

Figure 2 compares the performance of SG with FRG [9] in
terms of variance reduction (VR) and covariance cover (CC).
The variance reduction delivered by SG is always above 98%
of that achieved by FRG in all three datasets. The covariance
cover of SG is consistently higher than FRG. For BWSN

dataset, the difference between different methods is within 2,
which makes four curves difficult to tell. This result indicates
the decentralized approach employed by SG is competitive
with the centralized solution in terms of QoM.

Figure 3 investigates the correlation between covariance
cover and variance reduction. We increase the number of
allocated sensor nodes % under same PRR threshold 0.5. It is
difficult to distinguish VR and CC in BWSN dataset, because
the difference of them is within 1. Results in the other two
datasets show variance reduction and covariance cover are very
close when % is less than n/2, where n is total number of
sensors. This is because when % is small, allocated nodes
are not neighbors of each other, which coincides with our
assumption in Theorem 1. The difference increases when
% exceeds n/2, but a higher covariance cover is always
associated with a higher variance reduction. This result shows
that covariance cover can be used as an effective proxy to
optimize the variance reduction of a node allocation.

15 30 60 120
0

20

40

60

80

100

120

 V
a
r
ia

n
c
e

 R
e
d

u
c
ti

o
n

 Network Size

 SG

 FRG

(a) Variance Reduction

15 30 60 120
0

0.5

1

1.5

2

 E
x
e

c
u

ti
o

n
 T

im
e

 (
s
)

 Network Size

 SG

 FRG

(b) Execution Time

15 30 60 120
0

2

4

6

8

10

 Network Size

 No. of Rounds

 No. of Messages

(c) Cost Analysis

Fig. 4. Scalability Analysis

We evaluate the scalability of our algorithm by selecting
different subsets of sensor nodes from the BWSN dataset.
Figure 4(a) shows SG is highly competitive against FRG in
terms of variance reduction. Note the difference between SG
and FRG is consistently within 2, hence the SG and FRG
curves are almost indistinguishable here. The execution times
of SG and FRG for varying size of networks are compared in
Figure 4(b). Since the SG is a distributed algorithm, we show
the average execution time per node. For FRG, we show its
overall execution time because it is a centralized algorithm.
Our results show that SG remains fast as the number of nodes
increases, with the run time remaining below 0.1 second.
While the Macbook machine used in our simulation is more
powerful than typical sensor nodes, the short execution times
nevertheless indicates that SG is practical on sensors. More
importantly, the solution scales effectively with network size.
In comparison, the run time of FRG increases significantly as
the number of nodes increases.

It is important to note that SG brings significant advantages
than a centralized algorithm in several important ways. It
does not incur the communication overhead for collecting the
topology information of the entire network. Furthermore, it is
robust against network disconnection as it does not depend on
a single base station.

In Figure 4(c), we analyze the number of rounds and
communication cost of SG. Both the number of rounds and
messages per node increase moderately as the network size
increases. The number of rounds remains within 10, indicating
the scalability of our decentralized algorithm.

VII. CONCLUSIONS

This paper presents a distributed game-theoretic approach
to application allocation in shared sensor networks. We first
transform the optimal application allocation problem to a sub-
modular game and then develop a decentralized algorithm that
only employs localized interactions among neighboring nodes.
We prove that the network can converge to pure strategy Nash
equilibrium with a approximation bound. Simulations based
on three real-world datasets demonstrate that our algorithm
is competitive against a state-of-the-art centralized algorithm
while scaling effectively with network size.

VIII. ACKNOWLEDGMENT

This work is supported by NSF grants CNS-1017701
(NeTS), CNS-1035773 (CPS), CNS-1144552 (NeTS) and Mi-
crosoft Research New Faculty Fellowship.

REFERENCES

[1] “Citysense,” http://www.citysense.net/.
[2] http://research.cens.ucla.edu/areas/2005/NIMS/.
[3] http://www.memsic.com/products/wireless-sensor-networks/

wireless-modules.html.
[4] F. Bian, D. Kempe, and R. Govindan, “Utility-based sensor selection,”

in IPSN, 2006.
[5] C. Guestrin, A. Krause, and A. P. Singh, “Near-optimal sensor place-

ments in gaussian processes,” in ICML, 2005.
[6] A. Krause, J. Leskovec, C. Guestrin, J. VanBriesen, and C. Faloutsos,

“Efficient sensor placement optimization for securing large water distri-
bution networks,” Journal of Water Resources Planning and Manage-
ment, vol. 134, no. 6, pp. 516–526, 2008.

[7] A. Krause, B. McMahan, C. Guestrin, and A. Gupta, “Robust submod-
ular observation selection,” JMLR, vol. 9, pp. 2761–2801, Dec 2008.

[8] A. Kulik, H. Shachnai, and T. Tamir, “Maximizing submodular set
functions subject to multiple linear constraints,” in SODA, 2009.

[9] Y. Xu, A. Saifullah, Y. Chen, C. Lu, and S. Bhattacharya, “Near optimal
multi-application allocation in shared sensor networks,” in MobiHoc,
2010.

[10] A. Nedic and A. Ozdaglar, “Distributed subgradient methods for multi-
agent optimization,” IEEE Transactions on Automatic Control, vol. 54,
no. 1, pp. 48 –61, Jan. 2009.

[11] M. Rabbat and R. Nowak, “Distributed optimization in sensor networks,”
in IPSN, 2004.

[12] A. Vetta, “Nash equilibria in competitive societies, with applications to
facility location, traffic routing and auctions,” in FOCS, 2002.

[13] R. Johari and J. N. Tsitsiklis, “Efficiency loss in a network resource
allocation game,” Journal Mathematics of Operations Research, vol. 29,
no. 3, pp. 407–435, 2004.

[14] O. Ben-zwi and A. Ronen, “The local and global price of anarchy of
graphical games,” in SAGT, 2008.

[15] S. Bhattacharya, A. Saifullah, C. Lu, and G. C. Roman, “Multi-
application deployment in shared sensor networks based on quality of
monitoring,” in RATS, 2010.

[16] H. Kellerer, U. Pferschy, and D. Pisinger, Knapsack problems. Springer,
2004.

[17] http://db.csail.mit.edu/labdata/labdata.html.
[18] M. F. Duarte and Y. H. Hu, “Vehicle classification in distributed sensor

networks,” Journal of Parallel and Distributed Computing, vol. 64, no. 7,
pp. 826–838, Jul. 2004.

[19] A. Ostfeld and et al., “The Battle of the Water Sensor Networks (BWSN):
A Design Challenge for Engineers and Algorithms,” Journal of Water
Resources Planning and Management, vol. 134, no. 6, pp. 556–568,
2008.

[20] http://www.water-simulation.com/wsp/about/bwsn/ .
[21] M. Zuniga and B. Krishnamachari, “Analyzing the transitional region

in low power wireless links,” in SECON, 2004.

