Critique 5

- Due on 11/11, Thursday

WirelessHART

Chenyang Lu

Washington University in St. Louis
Applications in Process Industry

- **Process industry**
 - Automotive production
 - Chemical segments
 - Food and beverage
 - Power generation

- **Optimize process, enhance safety, protect environment**
 - Monitor the status of manually operated valves
 - Monitor safety relief valves to detect venting to avoid accidents
 - Detect leaks before they lead to environmental problems
 - Health, Safety, and the Environment (HSE) regulations
Feedback control loop controls physical plants
Example: regulate pressure of a gas container
Why Wireless

- **Cost reduction:** wiring is economically infeasible

- **Easier installation:** inaccessible locations

- **Easier maintenance**
 - Wired networks cannot handle severe heat or exposure of chemicals.
 - Wireless infrastructure can remain in place for many years.

- **Flexibility** for sensor placement
Challenges in Wireless

- Strict timing requirement
- Reliable communication despite wireless deficiencies
- Plant environments are inherently unreliable
 - Interference, power failures, lightening, storms…
- High security concerns
Wireless Technologies

- Existing standards fail in industrial environments
 - **ZigBee**: static channel
 - **Bluetooth**: quasi-static star network

- **WirelessHART**
 - For process measurement and control applications
 - First open and interoperable wireless standard to address the critical needs of real-world industrial applications
History

- **HART (Highway Addressable Remote Transducer Protocol)**
 - Most widely used field communication protocol
 - 30 million devices worldwide

- **WirelessHART released in Sep 2007 (as a part of HART 7)**
 - Adds wireless capabilities to the HART protocol while maintaining compatibility with existing devices, commands and tools.
Wireless for Process Automation

- World-wide adoption of wireless in process industries

50,016+ wireless field networks

16.9+ billion hours operating experience

Offshore

Onshore

Courtesy: Emerson Process Management
Features for Industrial IoT

- Reliable: 99.9%
- Secure
- Self-organizing, self-healing
- Interoperable
- Supports both star and mesh topologies
- Built-in time synchronization
Network Architecture
Network Manager

- Centralized brain manages the network and its devices
 - Collect topology information
 - Routing, scheduling
 - Generates network management packets to devices
 - Change when devices/links break
 - User/administrator interacts with the Network Manager

- Redundant Network Managers supported (only one active)
Field Devices

- Sensor/actuator/both
- Connected to the process or plant equipment
- Combines wireless communication with traditional HART field device capabilities
- May be line- or battery-powered
WirelessHART Adapter

Enables communication with a non-native device through a WirelessHART network
A Gateway provides

- One or more Host Interfaces connecting the Gateway to backbone networks (e.g., the plant automation network)
- One or more Access Points providing the physical connection into the WirelessHART network
- A connection to the Network Manager
- Buffering and local storage for publishing data, event notification, and common commands
- Time synchronization sourcing

A Gateway can support up to 80 devices
Other Devices

- **Handheld devices**
 - Portable applications used to configure, maintain or control plant assets.
 - Typically belong to networks of different standards

- **Plant Automation Network**
 - Connects client applications to the gateway

- **Security Manager**
 - Industry standard AES-128 ciphers/keys
WirelessHART PHY

Adopts IEEE 802.15.4
- 16 mutually orthogonal channels
- Operates in the 2.4GHz ISM band
- Data rate of up to 250 Kbps

Radio transceivers
- Omni-directional
- Half-duplex
- 100 meters LOS @ 0 dB
- Time to switch between channels: 0.192 ms
- Radio turn-on time: 4 ms
How to achieve reliability?

- Time diversity

- Channel diversity
 - Channel hopping
 - Channel blacklisting

- Route diversity
 - Graph routing

- Power Diversity
Time Slotted Channel Hopping (TSCH)

- Part of IEEE 802.15.4e
 - WirelessHART
 - 6TiSCH (IPv6 over the TSCH mode of IEEE 802.15.4e)

- Switch channel for every time slot to enhance reliability

- In each 10-ms time slot
 - Sender & receiver set channel
 - Sender waits for guard time to accommodate clock jitter
 - Sender transmits the packet
 - Receiver sends ACK if it receives the packet
Shared vs. Dedicated Time Slots

- A time slot may be shared or dedicated
- **Dedicated** slot: only one sender sends to a receiver
- **Shared** slot: multiple senders attempt to send to a receiver
Shared Time Slots

- Devices contest for access using a contention-based scheme.
 - Behave similar to Slotted Aloha
 - Use collision-avoidance (backoff).

- Using shared links may be desirable when
 - Throughput requirements of devices are low
 - Traffic is irregular or comes in bursts

- May reduce latency since devices do not need to wait for dedicated slot
 - True only when chances of collisions are low
Channel Hopping

- Enhances reliability
 - Avoid interference
 - Reduce multi-path fading effects

- Blacklisting restricts hopping to some channels

- Each device has a channel map (logical to physical)

- \[\text{ActiveChannel} = (\text{ChannelOffset} + \text{ASN}) \mod \#\text{Channel} \]
Routing

- WirelessHART supports both **Graph** and **Source** routing
- **Graph** routing: provides redundant paths

Routing graphs
- Uplink graph: upstream communication
- Downlink graph: Downstream communication
- Broadcast graph
A transmission is followed by a retransmission on the same link on a dedicated slot, then again on another link on a shared slot.

Each network contains exactly one overall schedule that is created and managed by the Network Manager.

The schedule is organized into Superframes.
Superframe

A series of time slots defining the communication schedule of a set of devices.
Superframe

- All devices must support multiple superframes.
- At least one superframe is always enabled while additional superframes can be enabled or disabled.
- The slot size and superframe length are fixed → a cyclic schedule with a fixed repetition rate.
Data Link Protocol Data Unit (DLPDU)

- Five DLPDU types:
 - Data
 - ACK
 - Advertise (periodic)
 - Keep-Alive (periodic)
 - Disconnect

- Devices receiving a packet with an unknown packet type must not acknowledge the packet and shall immediately discard it.
Network Initialization

- Network automatically starts up and self-organize.

- Before a network can form, a Network Manager and a Gateway must exist.

- The Network Manager activates the first Superframe. This establishes the system epoch – ASN 0.

- Once the Network Access Point starts to advertise, devices can begin to join the network.

- As devices join, the network forms.
Network Maintenance

- Advertise and Keep-Alive DLPDUs assist in building and maintaining the device's neighbor list.

- A Keep-Alive must be transmitted to the neighbor if Last Time Communicated > Keep Alive Interval.

- Keep-Alive transmissions are repeated until a new DLPDU is received from the neighbor.

- Keep-Alive no more often than once per 30 seconds (if temperature varies 2° C per minute or less).
Network Maintenance

- Path failures are reported to the Network Manager when devices lose connectivity to neighbors.
 - After the Path Fail Interval lapses, a Path-Down Alarm is generated (by both the sender and the receiver).

- As each device's Health Report Timer lapses, the devices generate health reports, which include indications of any problems the device is having with a neighbor.
 - Default period of each devices health report is 15 minutes.
Network Maintenance

- Devices continue trying to reestablish communication until the links between them are deleted by the Network Manager.

- It is common for broken paths to be restored after a temporary environmental effect passes.

- If the disruption persists, additional Path-Down Alarms will be generated when the Path Fail Interval lapses again.
Best Practices

- Each field device should have at least three neighbors
 - The 3rd neighbor will act as a backup if one of the two primary paths is obstructed or unavailable.

- Devices (antenna) mounted >0.5m from any vertical surface.

- Devices mounted >1.5m off the ground.

- 25% of the network devices should have a direct connection to the gateway in large networks.