Dependable
Industrial Internet of Things

Chenyang Lu
Cyber-Physical Systems Laboratory
Department of Computer Science and Engineering
IoT for Industry 4.0

- 11.6+ billion hours operating experience
- 36,800+ wireless field networks
 [Emerson]

- $944.92 million by 2020
 [Market and Market]

NOT your best-effort IoT at home!

Courtesy: Emerson Process Management
WirelessHART

- Reliability and predictability
 - Multi-channel TDMA MAC
 - One transmission per channel
 - Redundant routes
 - Over IEEE 802.15.4 PHY

- Centralized network manager
 - Collect topology information
 - Generate routes and schedule
 - Change when devices/links break

Industrial wireless standard for process automation
Most of today’s industrial wireless networks are for **monitoring**.

Dependable **control** requires

- **real-time**
- **control performance**
- **resilience to loss**

Source: https://www.automation.com
Towards Dependable Wireless Control

1. Real-time wireless networks and analysis

2. Optimizing control performance over wireless

3. Resilient yet efficient wireless control under loss.

Cannot be accomplished by wireless or control design alone →

Cyber-Physical Co-design of Wireless and Control
Towards Dependable Wireless Control

1. **Real-time wireless networks and analysis**

2. **Optimizing control performance over wireless**

3. **Resilient yet efficient wireless control under loss.**

Cannot be accomplished by wireless or control design alone ➔ Cyber-Physical Co-design of Wireless and Control
The Real-Time Problem

- A feedback control loop incurs a flow F_i
 - Route: sensor \rightarrow ... \rightarrow controller \rightarrow ... \rightarrow actuator
 - Generate packet every period P_i
 - Multiple control loops share a network

- Each flow must meet deadline $D_i \leq P_i$
 - Stability and predictable control performance

- Research problems
 - Real-time transmission scheduling \rightarrow meet deadlines
 - Fast delay analysis \rightarrow adapt to dynamics
Delays in WirelessHART

A transmission is delayed by

- **channel contention** when all channels are assigned to other transmissions
- **transmission conflict** over shared node

- 1 and 4 conflict
- 4 and 5 conflict
Fast Delay Analysis

- Compute upper bound of the delay for each flow
 - Sufficient condition for real-time guarantees
 - Enable fast adaptation to wireless dynamics

- Channel contention \rightarrow multiprocessor task scheduling
 - A channel \rightarrow a processor
 - Flow $F_i \rightarrow$ a task with period P_i, deadline D_i, execution time C_i
 - Leverage real-time scheduling theory!
 - Response time analysis for multiprocessors

- Account for delays due to transmission conflicts

Delay due to Conflict

- Low-priority flow F_l and high-priority flow F_h conflict \rightarrow delay F_l

- $Q(l,h)$: #transmissions of F_h sharing nodes with F_l
 - In the worst case, F_h can delay F_l by $Q(l,h)$ slots

- Conflicts contribute significantly to delays
 - Delay analysis [TC 2015]
 - Scheduling [RTSS 2010, 2015]
 - Routing [IoTDI 2018]
Real-Time Wireless Networking

- **WirelessHART stack** [IoT-J 2017]
 - Implementation on a 69-node testbed
 - Network manager (scheduler + routing)

- **Real-time and efficiency for industrial IoT**
 - Emergency communication [ICCPS 2015]
 - Channel selection [INFOCOM 2017]
 - Channel reuse [ICDCS 2018]
 - Energy-efficient, real-time routing [IoTDI 2016, 2018]

- **Low-Power Wide-Area Networks**
 - **SNOW**: Sensor Network Over TV White Spaces [SenSys 2016, 2017]
Towards Dependable Wireless Control

1. Real-time wireless networks and analysis

2. Optimizing control performance over wireless

3. Resilient yet efficient wireless control under loss.

Cannot be accomplished by wireless or control design alone →

Cyber-Physical Co-design of Wireless and Control
Wireless-Control Co-Design

Observation

- Wireless resource is scarce and dynamic
- Cannot afford separating wireless and control designs

Cyber-Physical Co-Design

- Cojoin the design of wireless and control

Examples

- Rate selection for wireless control [TECS 2014]
- Scheduling-control co-design [ICCPS 2013]
- Routing-control co-design [ICCPS 2015]
Rate Selection for Wireless Control

- Optimize the sampling rates of control loops sharing a WirelessHART network.

- Rate selection must balance control and communication.
 - Low sampling rate \rightarrow poor control performance
 - High sampling rate \rightarrow long delay \rightarrow poor control performance
 - Rate selection must balance control and communication.

Co-Design: incorporate the impacts of rates on both control and communication
Cyber-Physical Design Interface

- Digital implementation of control loop \(i \)
 - Periodic sampling at rate \(f_i \)
 - Performance deviates from continuous counterpart

- Control cost of control loop \(i \) under rate \(f_i \) [Seto RTSS’96]
 - Approximated as \(\alpha_i e^{-\beta_i f_i} \) with sensitivity coefficients \(\alpha_i, \beta_i \)

- Overall control cost of \(n \) loops: \(\sum_{i=1}^{n} \alpha_i e^{-\beta_i f_i} \)

Interface between cyber and physical designs!

The Rate Selection Problem

- Constrained non-linear optimization

- Determine sampling rates \(f = \{ f_1, f_2, \cdots, f_n \} \)

minimize control cost

\[
\sum_{i=1}^{n} \alpha_i e^{-\beta_i f_i}
\]

subject to

\[
delay_i \leq 1 / f_i
\]

\[
f_{i}^{\text{min}} \leq f_i \leq f_{i}^{\text{max}}
\]
A Challenging Optimization Problem!

In terms of decision variables (rates), the delay bounds are

- non-linear
- non-convex
- non-differentiable

![Graph showing Lagrange dual of objective versus rates of control loops 5 and 6.](image)
Relax delay bound \rightarrow simplify control optimization

- Derive a convex and smooth, but less precise delay bound.
- Rate selection becomes a convex optimization problem.

Optimize control performance efficiently at run time!

Towards Dependable Wireless Control

1. Real-time wireless networks and analysis

2. Optimizing control performance over wireless

3. Resilient yet efficient control under data loss.

This cannot be accomplished by wireless or control design alone →

Cyber-Physical Co-design of Wireless and Control
Resilient Control under Data Loss

- Data loss causes instability and degrades control performance.

- Traditionally addressed in separation
 - Control: control design to tolerate data loss.
 - Wireless: redundancy reduces loss at high resource cost.
 - *But how much redundancy is sufficient?*

- Cyber-physical **co-design**
 - Incorporate robust control design.
 - Tailor wireless protocols for control needs.
 - *Resilient and efficient wireless control.*
Handle Data Loss from Sensors

- **State Observer** estimates system states based on a system model even if there is no new data from sensors.

Handle Data Loss from Controller

- **Model Predictive Control**
 - Controller computes control inputs in the next $w+1$ sampling periods: $u(k), u(k+1), ..., u(k+w)$.
 - Actuator applies $u(k)$.

- **Buffered actuation**
 - Actuator buffers previous control inputs $u(k+1), ..., u(k+h)$ ($h \leq w$).
 - Applies buffered control input if updated input is lost.
 - Buffer size of $h \rightarrow$ tolerate h consecutive packet loss.
Case Study: Exothermic Reaction Plant

Plant: nonlinear chemical reaction
Control input: u_1 and u_2
Objective: Maintain temperature in Tank 2

Wireless Cyber-Physical Simulator (WCPS)

- Integrate TOSSIM and Simulink
- Capture dynamics of both wireless networks and physical plants
- Holistic simulations of wireless control
- Open source: wcps.cse.wustl.edu
Impact of Data Loss from Sensor

Extended Kalman filter under 60% loss from sensor

System is highly resilient to packet loss from sensors
Impact of Data Loss to Actuator

Actuation buffer (size 8) under 60% loss to actuator

Actuation is more sensitive to data loss than sensing.

⇒ Data losses are not equal!
Routing in WirelessHART

- **Existing approach to routing**
 - Source routing: single path routing \rightarrow efficient but unreliable.
 - Graph routing: every node on the primary path has a backup path \rightarrow reliable at cost of capacity and energy.
 - Entire network uses a **uniform** routing strategy.

- **But sensing and actuation need different levels of reliability!**

![Diagram](a) Source Routing

![Diagram](b) Graph Routing
Asymmetric Routing

- **Differentiated** routing for sensing and actuation

- State observer handles data loss from sensors

- **Source routing from sensors**
 - State observer compensates for lower reliability
 - Save network resource

- Actuation is more sensitive to data loss

- **Graph routing to actuators**
 - High reliability
 - High resource cost, but needed for control

Tailor routing to control

* Spend wireless resource where control needs it*
Source/Graph performs close to Graph/Graph at 3Hz sampling rate.

Efficiency allows higher sampling rate with Source/Graph \(\rightarrow\) further improve control performance!

Towards Dependable Wireless Control

- Real-time wireless networking
 - Protocols and delay analysis for latency guarantees

- Optimize control performance over wireless
 - Incorporate scheduling analysis in rate selection

- Resilient wireless control under data loss
 - Tailor routing strategies for control needs

Cannot be accomplished by wireless or control design alone

Cyber-Physical Co-design of Wireless and Control
Beyond Design: Holistic Cyber-Physical Control

- Today: network management and control operate in isolation
 - Controller controls physical plants
 - Network manager configures networks
 - Ignore interdependencies → vulnerable and inefficient industrial plants.
- Holistic control: close the loop between control and network
 - Holistic controller controls both physical plants and networks.

Beyond Design: Holistic Cyber-Physical Control

- Today: network management and control operate in isolation
 - Controller controls physical plants

How to coordinate networks and control at run-time for resiliency?

- Holistic controller controls both physical plants and networks.

Support real-time applications in the cloud.
- Latency guarantees.
- Real-time performance isolation.
- Resource sharing between real-time and non-real-time workloads.

Real-time cloud stack.
- RT-Xen → real-time virtual machine scheduling (*included in Xen*)
- VATC → real-time network I/O on a virtualized host.
- RT-OpenStack → real-time cloud resource management.

Diagram
- **RT-Xen**
 - Real-Time Virtualization
- **VATC**
 - RT Network I/O
- **RT-OpenStack**
 - Real-time cloud resource management
- **Cyber-Physical Event Processing**
- **RT Cilk Plus**

Latency guarantees
Beyond Wireless: Real-Time Edge and Cloud

- Support real-time applications in the cloud.
 - Latency guarantees.
 - Real-time performance isolation.

How to orchestrate edge and cloud for dependable control?

- **VATC** → real-time network I/O on a virtualized host.
- **RT-OpenStack** → real-time cloud resource management.
The Dependability Challenges

- Industrial IoT have started!
 - Industrial drivers: standards, consortia, deployments
 - System building blocks: from wireless to edge and cloud
 - Holistic modeling, simulation and design tools

- We must address the dependability challenges
 - Real-time, resiliency, safely, security…
 - Cyber-physical co-design is a necessity!

Application driver from Industry 4.0

CPS: Solving the Right Problem at the Right Time!
For More Information

- Wireless Cyber-Physical Simulator: http://wcps.cse.wustl.edu

- RT-Xen: https://sites.google.com/site/realtimexen/