Predicting Deteriorations of Heart Failure Patients with Wearables

Dingwen Li
Cyber-Physical Systems Laboratory
Department of Computer Science & Engineering
Motivation

- Hospital readmission rate is high for heart failure patients.
 - ~25% patients readmitted within 30 days

- Early detection of deterioration (readmission + death)
 - Just-in-time intervention \rightarrow better outcome
 - Reduce health care cost

- LACE index: state of practice for predicting readmission
 - Assess the risk of readmission based on inpatient data
 - Length (L) of stay; Acuity (A) of the admission; Co-morbidities (C);
 Number of emergency (E) department visits within the last 6 months

- Wearable devices provide convenient technologies for continuous outpatient monitoring.
Objective

- Assess the feasibility of collecting multi-modal data from wearable device.

- Explore the potential of predicting clinical deterioration
 - Develop and test predictive models based on machine learning

- Provide guidelines for future studies
Challenges

- Outpatient compliance
 - Wear devices continuously and properly outside hospitals
 - Potential problems
 - Forget to charge the device
 - Reluctant to wear the device
 - Improperly wear the device

- Learning from small sample size
 - May cause overfitting
 - Imbalanced dataset
Outline

- Study Setup
- System Analysis
- Predictive Model
System Overview

![Diagram showing the flow of data from FitBit, through a smartphone, to the Fitbit Cloud, and then to a database via Heroku. The data transfer is indicated by arrows.]
Study Protocol

- 25 heart failure patients were recruited.
 - Each patient is given Fitbit ChargeHR wristband.
 - Continuously monitor patients after discharge.
 - Outcomes: 60-day deterioration events.

- Heart rate (HR), step count and sleep status were collected.
 - Sampling period: 1 min (step, heart rate); 1 day (sleep yield)
Outline

- Study Setup
- System Analysis
- Predictive Model
Data Collection Analysis

- **Yield**: fraction of the expected samples that are successfully collected and stored in our database.

- **Latency**: end-to-end latency from Fitbit to our database.
Yield

- 88% devices have step yield >0.8.
- Only 60% devices have heart rate yield >0.8.
- 4 devices don’t have sleep data, 3 devices have low sleep yield.

Step monitoring has higher yield than heart rate and sleep
Compliance

Participants with yield < 0.8 for all sensing modalities → non-compliant

92% participants generally followed the protocol
Potential Cause of Data Loss

- User compliance (not wearing the device) (2 patients)
 - Low yield for both heart rate and step

- Wearing device improperly (9 patients)
 - Large discrepancy between heart rate and step yield

- No connectivity between the wristband and smartphone (0 patients)
 - Permanently losing un-sync data
End-to-End Latency

- Median: 8.6 minute; 99% percentile: 22.5 hour
- Did not cause data loss, as Fitbit can locally store data for 7 days.
- Low Latency allows daily intervention
- Latency can be reduced if analysis performed natively in Fitbit cloud
Outline

- Study Setup
- System Analysis
- Predictive Model
Data Preprocessing

- **Raw data format**
 - Raw heart rate and step count per minute
 - Derived data from Fitbit API, such as time in bed, sleep efficiency in sleep summary data

- **Data cleansing**
 - Extract step-related data only in 7am-7pm
 - Fill in missing data by carry forward imputation
 - Discard a whole day’s data if missing data last longer than the day or use mean values to impute
Feature Engineering

- **Statistical features:**
 - First- and second- order features extracted from sliding window
 - 1
 - **order:** mean, max, min, skewness, kurtosis
 - 2
 - **nd order:** energy, entropy, correlation, inertia and local homogeneity

- **Detrended Fluctuation Analysis**
 - Determine statistical self-affinity of time series
 - The fluctuation is then used as feature

- **Semantic features**
 - Sedentary behavior
Evaluation Methods

- **K-fold cross validation**: divide whole dataset into k equal-sized subgroups. Use one subgroup for testing and the remaining k-1 subgroups for training the model.

- **Leave-one-out cross validation**: leave a sample (or a group of samples) out for testing and train the model with rest of sample (or groups of samples).

Illustration of k-fold CV. Leave-one-out CV is a special case of k-fold CV with $k=n$.

Evaluation Metrics

- For imbalanced dataset, it’s not enough to just look at accuracy!
 - Example: for 1:9 positive vs. negative ratio, the predictor can achieve 0.9 accuracy if predicting everything as negative.
- A good predictor for imbalanced data should perform well for
 - sensitivity, specificity and precision.
- For clinical event prediction, we often prefer the predictors that have high sensitivity while fixing specificity at a certain level.

Sensitivity=$\frac{TP}{TP+FN}$ Specificity=$\frac{TN}{TN+FP}$ Precision=$\frac{TP}{TP+FP}$

<table>
<thead>
<tr>
<th></th>
<th>Positive</th>
<th>Negative</th>
</tr>
</thead>
<tbody>
<tr>
<td>Predicted positive</td>
<td>TP: true positives</td>
<td>FP: false positives</td>
</tr>
<tr>
<td>Predicted negative</td>
<td>FN: false negatives</td>
<td>TN: true negatives</td>
</tr>
</tbody>
</table>
Deterioration Early Warning

- **Task**: Predict upcoming deterioration using data collected in a recent sliding time window
- **Dataset**: 438 days’ data as samples with 427 normal samples and 11 deterioration samples
- **Model**: Weighted One Class SVM
 - Semi-supervised learning for anomaly detection
 - Only needs majority samples to train model in training phase
 - SVM is sensitive to outliers
 - Sample weights suppress outliers in training phase
Impact of *predicting horizon* and *window size*

Sensitivity = \(\frac{TP}{TP + FN} \)

Specificity = \(\frac{TN}{TN + FP} \)

Precision = \(\frac{TP}{TP + FP} \)

More accurate in predicting recent events

More recent window is more informative
Deterioration Early Warning

<table>
<thead>
<tr>
<th></th>
<th>Leave-one-subject-out</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
<td>Sensitivity</td>
<td>Specificity</td>
<td>Precision</td>
<td>Accuracy</td>
</tr>
<tr>
<td>K-means</td>
<td>0.9091</td>
<td>0.7500</td>
<td>0.6667</td>
<td>0.8065</td>
</tr>
<tr>
<td>LOF</td>
<td>0.0909</td>
<td>0.8500</td>
<td>0.1429</td>
<td>0.6863</td>
</tr>
<tr>
<td>OCSVM</td>
<td>0.8182</td>
<td>0.9500</td>
<td>0.8182</td>
<td>0.9216</td>
</tr>
<tr>
<td>WOCsvm</td>
<td>0.9091</td>
<td>0.9500</td>
<td>0.9091</td>
<td>0.9355</td>
</tr>
</tbody>
</table>

LOF: local outlier factor

- **High impact features**
 - Sleep and HR
 - DFA \rightarrow predictive features
Deterioration Risk Prediction

- **Task**: identify participants at high risks of deterioration using data collected from the beginning of monitoring
- **Dataset**: 25 patients as samples with 18 no deterioration occur vs. 7 deterioration occur
- **Model**: common ML models for clinical readmission prediction
 - Random forest, SVM, logistic regression, multi-level perceptron, K-nearest neighbor
ANOVA

- One-way Analysis of Variance (ANOVA)
 - Test whether the differences among group means are significant
 - Generates F-statistic and p-value.
 - High F-statistic and low p-value means there is a significant differences among the group means.
 - Provides insight on the feasibility of learning a stable predictor.

- Assumptions:
 - Independent observations
 - The variable follow a normal distribution in each group
 - The variances within all groups must be equal (only needed for very imbalanced groups)
Deterioration Risk Prediction

Hints from feature distribution:

- Groups for ANOVA test: deteriorated patients vs. non-deteriorated patients

ANOVA test results

- HR skewness (F = 7.9125, p = 0.0099)
- HR correlation (F = 5.4789, p = 0.0283)
- HR DFA 10 (F = 5.3353, p = 0.0302)
- Restless duration (F = 5.2912, p = 0.0308)
- Time in bed (F = 5.2663, p = 0.0312)
Deterioration Risk Prediction

- Features selected by sequential forward feature selection
 - Common features selected by all models
Generalization ability of KNN with number of nearest neighbors

Smaller difference of training and testing error means less extent of overfitting
Deterioration Risk Prediction

- **Model comparison**
 - All modalities (step, HR, sleep) + 20 days data
 - Specificity fixed at 0.95 to ensure less false alarms
 - 5-fold CV

<table>
<thead>
<tr>
<th>Model</th>
<th>AUC-ROC</th>
<th>AUC-PR</th>
<th>Sensitivity</th>
<th>Specificity</th>
<th>Precision</th>
<th>Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>RF</td>
<td>0.7434</td>
<td>0.5551</td>
<td>0.3077</td>
<td>0.9459</td>
<td>0.6667</td>
<td>0.780</td>
</tr>
<tr>
<td>SVM</td>
<td>0.5943</td>
<td>0.4016</td>
<td>0.1795</td>
<td>0.9459</td>
<td>0.5385</td>
<td>0.7467</td>
</tr>
<tr>
<td>LR</td>
<td>0.7829</td>
<td>0.6118</td>
<td>0.4872</td>
<td>0.9009</td>
<td>0.6333</td>
<td>0.7933</td>
</tr>
<tr>
<td>NN</td>
<td>0.4002</td>
<td>0.2048</td>
<td>0.0770</td>
<td>0.9459</td>
<td>0.3333</td>
<td>0.720</td>
</tr>
<tr>
<td>KNN</td>
<td>0.7533</td>
<td>0.6680</td>
<td>0.5385</td>
<td>0.9820</td>
<td>0.9130</td>
<td>0.8667</td>
</tr>
<tr>
<td>LACE</td>
<td></td>
<td>0.7647</td>
<td></td>
<td>0.6250</td>
<td>0.5556</td>
<td>0.7826</td>
</tr>
</tbody>
</table>

AUC-ROC: area under Receiver Operating Characteristic curve
AUC-PR: area under precision-recall (sensitivity) curve

KNN achieves higher specificity and precision
Impacts of multiple data modalities (KNN with 20-day data)

<table>
<thead>
<tr>
<th>Model</th>
<th>AUC-ROC</th>
<th>AUC-PR</th>
<th>Sensitivity</th>
<th>Specificity</th>
<th>Precision</th>
<th>Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step</td>
<td>0.6910</td>
<td>0.5839</td>
<td>0.3333</td>
<td>0.9550</td>
<td>0.7222</td>
<td>0.7933</td>
</tr>
<tr>
<td>HR</td>
<td>0.8064</td>
<td>0.6502</td>
<td>0.3590</td>
<td>0.9369</td>
<td>0.6667</td>
<td>0.7867</td>
</tr>
<tr>
<td>Sleep</td>
<td>0.7237</td>
<td>0.3439</td>
<td>0.0513</td>
<td>0.9099</td>
<td>0.1667</td>
<td>0.6867</td>
</tr>
<tr>
<td>Sleep,HR</td>
<td>0.8064</td>
<td>0.6502</td>
<td>0.3590</td>
<td>0.9369</td>
<td>0.6667</td>
<td>0.7867</td>
</tr>
<tr>
<td>Sleep,Step</td>
<td>0.6556</td>
<td>0.6304</td>
<td>0.4615</td>
<td>1.00</td>
<td>1.00</td>
<td>0.860</td>
</tr>
<tr>
<td>Step,HR</td>
<td>0.8151</td>
<td>0.6991</td>
<td>0.4872</td>
<td>0.9369</td>
<td>0.7308</td>
<td>0.820</td>
</tr>
<tr>
<td>All</td>
<td>0.7533</td>
<td>0.6880</td>
<td>0.5385</td>
<td>0.9820</td>
<td>0.9130</td>
<td>0.8667</td>
</tr>
</tbody>
</table>

The HR sensing modality is effective!
Deterioration Risk Prediction

- How many days to use for training an accurate predictor? (KNN with All modalities)

<table>
<thead>
<tr>
<th>Model</th>
<th>AUC-ROC</th>
<th>AUC-PR</th>
<th>Sensitivity</th>
<th>Specificity</th>
<th>Precision</th>
<th>Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>5-day</td>
<td>0.4247</td>
<td>0.2114</td>
<td>0.0256</td>
<td>0.9009</td>
<td>0.0833</td>
<td>0.6733</td>
</tr>
<tr>
<td>10-day</td>
<td>0.7339</td>
<td>0.6884</td>
<td>0.3077</td>
<td>1.0</td>
<td>1.0</td>
<td>0.820</td>
</tr>
<tr>
<td>15-day</td>
<td>0.7710</td>
<td>0.5808</td>
<td>0.3333</td>
<td>0.9009</td>
<td>0.5417</td>
<td>0.7533</td>
</tr>
<tr>
<td>20-day</td>
<td>0.7533</td>
<td>0.6880</td>
<td>0.5385</td>
<td>0.9820</td>
<td>0.9130</td>
<td>0.8667</td>
</tr>
</tbody>
</table>

Long-term monitoring data is more useful

10-day data may be used to train a predictor early on
Suggestions

- Always try your best to get a large dataset
- If not, try statistical analysis first to investigate the dataset
- Be careful with the small dataset
 - Be aware of overfitting by looking at train/test errors.
 - Explore techniques to mitigate overfitting
 - Don’t just look at accuracy, especially for imbalanced dataset
- Clean the dataset before training the model
 - Remove invalid values
 - Impute missing values
 - Normalize the dataset if needed