Project Guidelines

Chenyang Lu
Steps

1. Come up with your favorite topic
2. Form a team
3. Proposal: propose a design and plan
4. Analyze and implement your solution
5. Evaluate your solution
6. Demo 1, 2 and Final Demo
7. Write a technical report
Option A: Build IoT systems based on cloud and edge
- Front end: Raspberry Pi…
- Cloud and edge: storage, analytics, Alexa, notification, Greengrass

Option B: Build a real-time system
- Explore how to achieve and optimize real-time performance

Encouraged to address latency
- Measuring latency (mean, variance, tail)
- Impacts of different configurations (e.g., edge vs. cloud) on latency
Choose topics

Put together a team

Meet every week to coordinate

A lot of work (and fun) throughout the semester!
Everyone should be in a **three**-member team

- Need special approval from TA for a different size

Use **Piazza** to “Search for Teammates”

Email Corey your team members by **2/4**

- One email per team

We will help make sure everyone has a team.
Proposal Presentation

- In class on 2/9

- **6 min** per group
 - 5-min talk + 1-min Q&A
 - 3-4 slides
 - Rehearse over Zoom
 - **Turn on your video** during your presentation

- Your **elevator pitch**!
Written Proposal

- One proposal/team, one page
 - Team members
 - Concise description of project
 - Responsibilities of each member
 - Equipment needed

- Submit on Canvas by 2/9, 11:59pm
 - Written proposal
 - Presentation slides
Demo 1

- In class on 3/9 and 3/11
- **12 min** per team
 - 10-min presentation + 2-min Q&A
- Must show something **real**.
- Submit on Canvas before the class of your presentation.
 - Slides
 - Video as backup
Demo II

- In class on **4/6** and **4/8**
- **12 min** per team
 - 10-min presentation + 2-min Q&A
- Substantial progress towards final demo.
- Submit on Canvas before the class of your presentation.
 - Slides
 - Video as backup
Final Demo

- In class on 5/4 (12 noon - 2:15 pm)
- 12 min per team
 - 10-min presentation + 2-min Q&A
- Set up and test your demo in advance.
- All should attend the entire session. It’ll be fun!
- Submit on Canvas before class
 - Slides
 - Video as backup
Final Report

- Submit on Canvas by **5/11, 11:59pm**.

- **Report**
 - Style follows conference papers in the reading list
 - 6 pages, double column, 10 pts font
 - Use templates on the class web page

- **Materials**
 - Web page
 - Slides of your final presentation
 - Source code
 - Documents: README, INSTALL, HOW-to-RUN
 - Video
Suggested Report Outline

Abstract

1. Introduction
2. Goals and Requirements
3. Design
4. Implementation
5. Experiments
6. Related Works
7. Lessons Learned
8. Conclusion and Future Work
Peer Review

- For fairness in group projects.

- Email me on 5/11
 - Percentage of contributions of each team member.
 - Brief justification.
Follow-Me Music
Spice Bot: Spice-Blend Automation

- 3D-Printed Prototype
- Voice-Control-Interface
 - Amazon Echo
- Actuator Control
 - Raspberry Pi
- Control Command Interpretation
 - AWS IoT

BY ALEX HERRIOTT, QUOC NGUYEN, RAYMOND JONES
Car Informatics in the Cloud

- Pull real-time OBD data from a car
- Upload to the Cloud and display stats at real-time

BY Ethan Vaughan, Frank Sun, and Adith J. Boloor
Smart Lock

- Remote doorway system
 - Live video
 - Arrival (motion) detection
- Web application
 - Node.js server on an EC2 instance
 - Live video via ssh tunnel
 - Engage/disengage lock

BY Charles Ahrens Feldman, David Ayeke, and Steven Bosch
Latency of Edge Computing

- Benchmark and optimize latency with edge computing

AWS IoT Greengrass
https://aws.amazon.com/greengrass/