Project Guidelines

Chenyang Lu
Steps

1. Come up with your favorite topic
2. Form a team
3. Proposal: propose a design and plan
4. Analyze and implement your solution
5. Evaluate your solution
6. Demo 1, 2 and Final Demo
7. Write a technical report
Topics

- Three students per team
 - Build a system
 - Write a paper
 - Demo to the class

- Option A: Build a real-time embedded system
 - Explore how to achieve and optimize real-time performance

- Option B: Build IoT systems based on cloud and edge
 - Front end: Raspberry Pi…
 - Cloud and edge: storage, analytics, Alexa, notification

- Address latency
 - Measure latency (mean, variance, tail)
 - Evaluate the impacts of different configurations (e.g., local vs. edge vs. cloud) on latency.
Start Early and Work Often!

- Choose topic
- Put together a team
- Meet every week to coordinate
- A lot of work (and fun) throughout the semester!
Teaming

- Everyone should be in a **three**-member team
 - Need special approval from TA for a different size

- Use **Piazza** to “Search for Teammates”

- Email Eric your team members by **1/27**
 - One email per team

- We will help make sure everyone has a team.
In class on 2/3

5 min per group
- 4-min talk + 1-min Q&A (hard deadline)
- 2-3 slides
- Rehearse over Zoom
- Turn on your video during your presentation

Your elevator pitch!
Written Proposal

- One proposal/team, one page
 - Team members
 - Overview of project
 - Responsibilities of each member
 - Equipment

- Submit on Canvas by 2/3 (11:59pm)
 - Written proposal
 - Presentation slides
Demo I

- In class on 3/1 and 3/3

- **9 min** per team
 - 8-min demo + 1-min Q&A

- Must show something **real**

- Submit slides before the class of your demo.
Demo II

- In class on 3/29 and 3/31

- **9 min** per team
 - 8-min demo + 1-min Q&A

- Substantial progress towards final demo

- Submit slides before the class of your demo.
Final Demo

- In class on 5/5 (1 pm - 3:15 pm)

- 9 min per team
 - 8-min demo + 1-min Q&A

- Set up and test your demo in advance.

- Submit before class: slides, backup video if needed

- All should attend the entire session. It’ll be fun!
Final Report

Submit on Canvas by 5/12, 11:59pm.

Report
- Format and style: follow conference papers in the reading list
- 6 pages, double column, 10 pts font
- Use templates on the class web page

Materials
- Web page
- Slides of your final presentation
- Source code
- Documents: README, INSTALL, HOW-TO-RUN
- Video
Suggested Report Outline

Abstract

1. Introduction
2. Goals and Requirements
3. Design
4. Implementation
5. Experiments
6. Related Works
7. Lessons Learned
8. Conclusion and Future Work
Peer Review

- For fairness in group projects.

- Email me on 5/12
 - Percentage of contributions of each team member.
 - Brief justification.
Car Informatics in the Cloud

- Pull real-time OBD data from a car
- Upload to the Cloud and display stats at real-time

BY Ethan Vaughan, Frank Sun, and Adith J. Boloor
Follow-Me Music
Spice Bot: Spice-Blend Automation

- 3D-Printed Prototype
- Voice-Control-Interface
 - Amazon Echo
- Actuator Control
 - Raspberry Pi
- Control Command Interpretation
 - AWS IoT

BY ALEX HERRIOTT, QUOC NGUYEN, RAYMOND JONES
Smart Lock

- Remote doorway system
 - Live video
 - Arrival (motion) detection
- Web application
 - Node.JS server on an EC2 instance
 - Live video via ssh tunnel
 - Engage/disengage lock

BY Charles Ahrens Feldman, David Ayeke, and Steven Bosch
Explore Edge Computing

- Benchmark and optimize latency with edge services

AWS IoT Greengrass
https://aws.amazon.com/greengrass/
Real-Time Edge Cloud

- Advanced control and analytics \rightarrow **edge cloud** shared by applications
- Interacting with physical environment \rightarrow **real-time** performance
- Example: automotive systems
 - Shared platforms: \sim100 ECUs \rightarrow \sim10 multicore processors (**edge cloud**)
 - Multiple virtualized systems

Real-time performance guarantees in edge clouds

Xen

Xen: type-1, baremetal hypervisor
- Domain-0: drivers, tool stack to control VMs
- Guest Domain: para-virtualized or fully virtualized OS

Scheduling hierarchy
- Xen schedules VCPUs on PCPPUs.
- Guest OS schedules threads on VCPUs.
- Credit scheduler: round-robin with proportional share.
RT-Xen

- Real-time schedulers in the Xen hypervisor.
- Provide real-time guarantees to tasks in VMs.
- Started as a course project and grew into a major research effort

Impacts

- Transformed compositional scheduling from theory to virtualized platforms
- Produced the real-time deferrable server (rtlds) scheduler in the Xen hypervisor
Logistics

- TA for projects: Hanyang (Eric) Liu
- Email TA or me for appointments to discuss ideas
- All work will be submitted on Canvas