
Brief Announcement: Serial-Parallel Reciprocity in
Dynamic Multithreaded Languages

Kunal Agrawal
Washington University at St

Louis
kunal@cse.wustl.edu

I-Ting Angelina Lee
MIT Computer Science and

Artificial Intelligence
Laboratory

angelee@mit.edu

Jim Sukha
MIT Computer Science and

Artificial Intelligence
Laboratory

sukhaj@mit.edu

ABSTRACT

In a dynamically multithreaded platform that employ work stealing,

there seems to be a fundamental tradeoff between providing prov-

ably good time and space bounds and supporting SP-preciprocity,

a property that allows arbitrary calling between parallel and serial

code, including legacy serial binaries. Many known dynamically

multithreaded platforms either fail to support SP-reciprocity or sac-

rifice on the provable time or space bounds that an efficient work-

stealing scheduler could otherwise guarantee.

We describe PR-Cilk, a design of a runtime system that supports

SP-reciprocity in Cilk and provides provably efficient bounds on

time and space. In order to maintain the stack space bound, PR-

Cilk uses “subtree-restricted work stealing.” We show that with

subtree-restricted work stealing, PR-Cilk provides the same guar-

antee on stack space usage as ordinary Cilk. The completion time

guaranteed by PR-Cilk is slightly worse than ordinary Cilk. Never-

theless, if the number of times a C function calls a Cilk function is

small, or if each of these Cilk functions called by C functions are

sufficiently parallel, PR-Cilk still guarantees linear speedup.

Categories and Subject Descriptors: D.1.3 [Programming Tech-

niques]: Concurrent Programming

General Terms: FIX ME! Algorithms, Performance, Theory

Keywords: FIX: Cilk, dynamic multithreading, Intel Threading

Building Blocks, scheduling, work stealing

1. INTRODUCTION
Work stealing [3, 5, 6, 4, 7, 9, 10, 11, 12, 13, 15, 17, 18, 23,

27] is fast becoming a standard way to load-balance dynamic mul-

tithreaded computations on multicore hardware. Concurrency plat-

forms that support work stealing include Cilk-1 [4], Cilk-5 [12],

Cilk++ [22], Fortress [2], Hood [6], Java Fork/Join Framework

[19], Task Parallel Library (TPL) [21], Threading Building Blocks

(TBB) [24], and X10 [8]. Work stealing admits an efficient im-

plementation that guarantees bounds on both time and stack space

[5, 12], but many existing implementations that meet these bounds

— including Cilk-1, Cilk-5, and Cilk++ — do not exhibit series-

parallel reciprocity, or SP-reciprocity[20] for short, i.e., the prop-

erty of allowing arbitrary calling between parallel and serial code

— including legacy (and third-party) serial binaries. Without SP-

reciprocity, it can be difficult to integrate a parallel library into ex-

isting legacy code base.

Unfortunately, supporting SP-reciprocity in a concurrency plat-

form that employs work stealing often weakens the bounds on pro-

Copyright is held by the author/owner(s).
SPAA’10, June 13–15, 2010, Thira, Santorini, Greece.
ACM 978-1-4503-0079-7/10/06.

gram completion time or stack space comsumption that the plat-

form could otherwise provide. 1 For instance, TBB supports SP-

reciprocity and employs a heuristic referred as “depth-restricted

work stealing” [26] to limit stack space usage, but does not provide

a provable time bound. In [20], the authors propose a modification

to the Cilk-5 runtime that provides provable time and space bounds

and supports SP-reciprocity, but their system requires additional

operating system support. In addition, the space bound of [20] is

slightly weaker than ordinary Cilk.

In this work, we present another point in the design space for

work-stealing concurrency platforms, referred as PR-Cilk, that em-

ploys a heuristic referred as “subtree-restricted work stealing”. PR-

Cilksupports SP-reciprocity, provides the same space bound as Cilk,

and provides a provable but slightly weaker time bound as com-

pared to ordinary Cilk. To be more precise, let T1 be the work of

a deterministic computation (its serial running time), and let T∞ be

the span of the computation (its theoretical running time on an infi-

nite number of processors). Let V be the number of Cilk functions

which are called from some C function, and let eT∞ be the “aggre-

gate span” of the computation, where eT∞ is bounded by the sum

over all the spans for each of the V Cilk functions. We prove that

PR-Cilk can execute the computation on P processors in expected

time E [T ] = O(T1/P + eT∞ +V lgP). We do not present the proof

due to space constraints, but to summarize, this bound achieves lin-

ear speedup when V is small, or when each of the V Cilk functions

has “sufficient parallelism.” As for space, PR-Cilk achieves the

same space bound as Cilk; if S1 is the stack space usage of a serial

execution, then the stack space SP consumed during a P-processor

execution satisfies SP ≤ PS1. In contrast, to our knowledge, no

analogous time bound exists when one uses depth-restricted work-

stealing from TBB, an existing scheme which also addresses the

problem of supporting SP-reciprocity by making a tradeoff on time

bound.

2. DIFFICULTY OF SP-RECIPROCITY
This section describes how a work-stealing scheduler operates,

why the “cactus stack” abstraction is necessary, and explains why

SP-reciprocity is difficult to obtain. We use Cilk-5 [12] as a model,

because it is the system which PR-Cilk is based on.

Cilk’s work-stealing scheduler

In Cilk, the programmer denote the logical parallelism of the pro-

gram by using the keywords such as spawn and sync.When a func-

tion call is preceded by the keyword spawn, the parent function

1Although Fortress, Java Fork/Join Framework, TPL, and X10 em-
ploy work stealing, they do not suffer from the same problems,
because they are byte-code interpreted by a virtual-machine envi-
ronment.



spawns the child function, invoking the child without suspending

the parent, thereby creating parallelism. The complement of spawn

is the keyword sync, which acts as a local barrier, indicating that

the control shall not pass the sync statement until all previously

spawned functions have returned.

Cilk’s work-stealing scheduler load-balances parallel execution

across the available worker threads while respecting the logical par-

allelism denoted by the programmer. Cilk follows the “lazy task

creation” strategy of Kranz, Halstead, and Mohr [17], where the

worker suspends the parent when a child is spawned and begins

work on the child.Operationally, when the user code running on a

worker encounters a spawn, it invokes the child function and sus-

pends the parent, just as with an ordinary subroutine call, but it also

places the parent frame on the bottom of a deque (double-ended

queue). When the child returns, it pops the bottom of the deque

and resumes the parent frame. Pushing and popping frames from

the bottom of the deque is the common case, and it mirrors pre-

cisely the behavior of C or other Algol-like languages in their use

of a stack.

A worker exhibits behavior that differs from ordinary serial stack

execution if it runs out of work. This condition can happen due

to two cases. First, the worker may stall at a sync in a function

because some of the function’s spawned children have not yet re-

turned. Second, the worker may return from a function and find that

its deque is empty (i.e., all its ancestor frames are stolen).2 When

the worker has no work, the worker becomes a thief , and and at-

tempts to steal the topmost frame from a randomly chosen victim

worker. If the steal is successful, the worker resumes the stolen

frame. If the victim has no work, the thief picks another worker

randomly and attempts to steal again.

Cilk’s support for the cactus-stack abstraction

An execution of a serial Algol-like language, such as C [16] or C++

[25], can be viewed as a “walk” of an invocation tree, which dy-

namically unfolds during execution and relates function instances

by the “calls” relation: if function instance A calls function instanceB, then A is a parent of the child B in the invocation tree. Such

serial languages use a linear-stack representation: When a func-

tion is called, the callee’s stack is allocated right underneath the

caller’s stack by advancing the stack pointer, and when a function

returns, the stack pointer is restored to point to the caller’s stack.

This scheme is space-efficient, because all the children of a given

function can use the same region of the stack.

The notion of the invocation tree can be extended to include

spawns, as well as calls, but unlike the serial walk of an invoca-

tion tree, a parallel execution unfolds the tree more haphazardly

and in parallel. Since multiple children of a function may be ex-

tant simultaneously (due to spawns), a linear-stack data structure

no longer suffices for storing activation frames. Instead, the tree of

extant activation frames forms a cactus stack [14].

Cilk supports the cactus stack abstraction by allocating frames

for Cilk functions in noncontiguous space, where each frame is

linked to its parent frame. These frames in the noncontiguous mem-

ory are referred as shadow frames to differentiate from the activa-

tion frames in the linear stacks. As a result, the call/return linkage

for a Cilk function, referred as the Cilk linkage, differs from the

ordinary C linkage: a Cilk function passes parameters and returns

value via its shadow frame. That means, if a parent passes a pointer

of its local variable to its child, the pointer refers to the location in

2In this second case, the worker first checks whether the parent is
stalled on a sync and whether this child is the last child to return.
If so, it resumes the parent function passing the stalling sync.

the shadow frame. Moreover, multiple extant children can share a

single view of their parent frame simultaneously.

This shadow stack strategy allows Cilk to provide a provable

space bound, but does not allow SP-reciprocity. When a worker’s

deque is empty, the worker can pop the suspended activation frames

in its linear stack (since there is no pointers to variables in the

frames elsewhere in the system). Since a worker only steals when

its deque (and therefore its stack) is empty, each worker uses no

more stack space than the space used by the serial execution of the

program. However, this stategy uses the Cilk linkage to spawn,

which is incompatible with the ordinary C linakge. A sharp delin-

eation exists between C and Cilk: while a Cilk function may call a

C function, a C function may not call back to a Cilk function, unless

the C function is also recompiled to use the special Cilk linkage.

Other alternatives

As an alternative to shadow stack, one can preserve SP reciprocity

by using linear stacks to implement cactus stacks. For example, if a

Cilk function A executing on worker p has multiple extant children,

other workers executing these extant children may share a single

view of A’s frame sitting in p’s stack space. However, this strat-

egy compromises either the completion time or stack space bound

because of the fact that once a frame has been allocated, its loca-

tion in virtual memory cannot be changed, because there may be a

pointer to a variable in the frame elsewhere in the system. Thus,

if A’s frame is shared among workers, p cannot reuse the stack

space where A resides until all A’s extant children return. Now,

if p runs out of work before A is ready to return, p has two options.

In the first option, p can block and wait for A’s children to com-

plete. This alternative causes workers to block and therefore no

longer provides the near-optimal completion time guarantee that

Cilk provides. In the second option, p can go steal work from some

other worker. In this case, p has no choice but to push the stolen

work onto its stack below A.3 If A is already deep in the stack, and

the stolen work is close to the top of the invocation tree, p’s stack

can grow twice as deep as what it would be in a serial execution.

Furthermore, this scenario could occur recursively, consuming im-

practically large stack space.

TBB operates on linear stacks with ordinary linkage and thus

provides SP-reciprocity. In order to avoid this large space con-

sumption, TBB employs depth-restricted work stealing, where a

worker is restricted to steal only tasks which are deeper than the

worker’s deepest blocked task, thereby limiting the space consump-

tion. The fact that a thief can steal from arbitrary part of the invo-

cation tree (as long as the depth restriction is not violated) makes it

difficult to prove a non-trivial upper bound on the completion time,

however. For a lower bound, [26] exhibits a computation for which

TBB runs asymptotically serially because of depth-restricted work

stealing, but for which Cilk can achieve linear speedup.

3. PR-Cilk DESIGN
PR-Cilk supports SP-reciprocity and provable time and space

bounds by using a strategy called subtree-restricted work steal-

ing. In addition, PR-Cilk uses shadow frames of Cilk functions

and the regular C activation frames for C functions. Some modifi-

cations to the runtime system and the compiler are required in order

to support transitioning between two different types of frames and

linkages. Due to space limit, however, we focus our attention on

how PR-Cilk supports subtree-restricted work stealing using “par-

allel regions”, a mechanism adapted from HELPER [1].

3We assume the stack grows downward.



To remind ourselves of the problem, suppose a worker p executes

a C function foo which calls a Cilk function A. Since the C func-

tion uses the activation frame, the stack space associated with foo
can not be removed from p’s stack until all the descendants of A in

the invocation tree are completed. If p runs out of the work before

all children of A finish, then, as we mentioned earlier, it must either

block and wait for its extant children to complete (thereby sacri-

ficing the time bound) or steal (potentially consuming excessive

space). PR-Cilk solves this problem by using subtree-restricted

work stealing, which forces p to steal from only within A’s sub-

tree in the invocation tree. Notice that, in any serial execution, the

stack depth of any frame within A’s subtree is greater than the stack

depth of A, where p is stalled. Therefore, no processor can use

more stack space than the serial execution, and we maintain the

Cilk stack space bound. Furthermore, any work p steals is work

that must be completed in order for A to return, and p is (in some

sense) helping to complete its own work.

By default in Cilk a worker is only allowed to steal from the top

of a deque; Cilk has no mechanism for limiting work stealing to

some subtree of the invocation tree. PR-Cilk augments the Cilk-

5 runtime system with parallel regions in order to allow subtree-

restricted work stealing. A parallel region construct for Cilk was

originally described in HELPER [1] as a way of supporting nested

parallelism in locked critical sections. Here, we use the term par-

allel region to refer to a subcomputation with nested parallelism

whose root represents a Cilk function called by a C function, but

the mechanism for supporting parallel regions is almost identical.

Conceptually, each parallel region RA is an instance of a Cilk

function that uses its own deque pool — a set of deques — for

self-contained scheduling. When a worker p starts a parallel re-

gion RA, the runtime system creates a new deque pool for RA, de-

noted by dqpool(RA). The runtime system allocates a deque q ∈dqpool(RA) to a worker p when p is assigned to RA. In order to

support nested parallel regions, each worker p maintains a chain of

deques, each for a different region, with the bottom deque in the

chain being p’s active deque. Whenever a worker p tries to steal, it

only steals from deques in the same pool as p’s active deque.

We can directly use the design of parallel regions to support

subtree-restricted work stealing in PR-Cilk. When worker p calls

a Cilk function A from a C function foo, it implicitly invokes a

function called start_region. The start_region call causes p

to start a new region, which involves p creating a new deque pooldqpool(RA) and creating a new deque q for itself in dqpool(RA).
After creating the region, p continues to execute A, which may

spawn more functions under region RA, and the frames associated

with these functions are added to q. Other workers may later be as-

signed to this region and steal from q. Any additional work created

by these workers within RA is added to some deque in dqpool(RA)
as well. If p later stalls on a sync in A, it can now steal work from

any deque in the pool dqpool(RA), since such work belongs to the

subtree rooted at A.

Since PR-Cilk uses the same policy for workers entering and

leaving parallel regions as described in [1], the completion time

and stack space bounds in [1] can be simplified and applied di-

rectly to PR-Cilk. PR-Cilk computations have more structure than

HELPER, however. Specifically in PR-Cilk, regions are not asso-

ciated with locks, so a worker is assigned to a region only by either

starting the region or stealing into the region, whereas in HELPER,

a worker can also be assigned to a region via acquiring a lock as-

sociated with the region. Given this property, we believe that the

time bound may be improved. As future work, we plan to improve

the time bound, and possibly explore the implications of having

different entering and leaving policies for parallel regions, as the

completion time may be affected depending on the policy adapted.

Acknowledgments

Thanks to Matteo Frigo of Axis Semiconductor, and the Supertech

group members of MIT CSAIL for helpful discussions.

4. REFERENCES
[1] K. Agrawal, C. E. Leiserson, and J. Sukha. Helper locks for fork-join parallel

programming. In PPoPP ’10, Jan. 2010.

[2] E. Allen, D. Chase, J. Hallett, V. Luchangco, J.-W. Maessen, S. Ryu, G. L. S.

Jr., and S. Tobin-Hochstadt. The Fortress Language Specification Version 1.0.

Sun Microsystems, Inc., Mar. 2008.

[3] N. S. Arora, R. D. Blumofe, and C. G. Plaxton. Thread scheduling for

multiprogrammed multiprocessors. In SPAA ’98, pages 119–129, June 1998.

[4] R. D. Blumofe, C. F. Joerg, B. C. Kuszmaul, C. E. Leiserson, K. H. Randall,

and Y. Zhou. Cilk: An efficient multithreaded runtime system. Journal of

Parallel and Distributed Computing, 37(1):55–69, August 1996.

[5] R. D. Blumofe and C. E. Leiserson. Scheduling multithreaded computations by

work stealing. Journal of the ACM, 46(5):720–748, Sept. 1999.

[6] R. D. Blumofe and D. Papadopoulos. Hood: A user-level threads library for

multiprogrammed multiprocessors. Technical Report, University of Texas at

Austin, 1999.

[7] F. W. Burton and M. R. Sleep. Executing functional programs on a virtual tree

of processors. In FPCA ’81, pages 187–194, Oct. 1981.

[8] P. Charles, C. Grothoff, V. Saraswat, C. Donawa, A. Kielstra, K. Ebcioglu,

C. von Praun, and V. Sarkar. X10: An object-oriented approach to non-uniform

cluster computing. In OOPSLA ’05, pages 519–538. ACM, 2005.

[9] R. Feldmann, P. Mysliwietz, and B. Monien. Studying overheads in massively

parallel min/max-tree evaluation. In SPAA ’94, pages 94–103, June 1994.

[10] R. Finkel and U. Manber. DIB — A distributed implementation of

backtracking. ACM TOPLAS, 9(2):235–256, Apr. 1987.

[11] V. W. Freeh, D. K. Lowenthal, and G. R. Andrews. Distributed Filaments:

Efficient fine-grain parallelism on a cluster of workstations. In OSDI ’94, pages

201–213, Nov. 1994.

[12] M. Frigo, C. E. Leiserson, and K. H. Randall. The implementation of the Cilk-5

multithreaded language. In PLDI ’98, pages 212–223, 1998.

[13] R. H. Halstead, Jr. Multilisp: A language for concurrent symbolic computation.

ACM TOPLAS, 7(4):501–538, Oct. 1985.

[14] E. A. Hauck and B. A. Dent. Burroughs’ B6500/B7500 stack mechanism.

Proceedings of the AFIPS Spring Joint Computer Conference, pages 245–251,

1968.

[15] R. M. Karp and Y. Zhang. Randomized parallel algorithms for backtrack search

and branch-and-bound computation. Journal of the ACM, 40(3):765–789, July

1993.

[16] B. W. Kernighan and D. M. Ritchie. The C Programming Language. Prentice

Hall, Inc., second edition, 1988.

[17] D. A. Kranz, R. H. Halstead, Jr., and E. Mohr. Mul-T: A high-performance

parallel Lisp. In PLDI ’89, pages 81–90, June 1989.

[18] B. C. Kuszmaul. Synchronized MIMD Computing. PhD thesis, MIT Department

of EECS, May 1994.

[19] D. Lea. A Java fork/join framework. In Java Grande Conference, pages 36–43,

2000.

[20] I.-T. A. Lee, S. Boyd-Wickizer, Z. Huang, and C. E. Leiserson. Using

thread-local memory mapping to support cactus stacks in work-stealing runtime

systems. Submitted for publication.

[21] D. Leijen, W. Schulte, and S. Burckhardt. The design of a task parallel library.

In OOPSLA ’09, pages 227–242, 2009.

[22] C. E. Leiserson. The Cilk++ concurrency platform. In 46th Design Automation

Conference. ACM, July 2009.

[23] R. S. Nikhil. Cid: A parallel, shared-memory C for distributed-memory

machines. In LCPC ’94, Aug. 1994.

[24] J. Reinders. Intel Threading Building Blocks: Outfitting C++ for Multi-core

Processor Parallelism. O’Reilly Media, Inc., 2007.

[25] B. Stroustrup. The C++ Programming Language. Addison-Wesley, Boston,

MA, third edition, 2000.

[26] J. Sukha. Brief announcement: A lower bound for depth-restricted work

stealing. In SPAA ’09, Aug. 2009.

[27] M. T. Vandevoorde and E. S. Roberts. WorkCrews: An abstraction for

controlling parallelism. International Journal of Parallel Programming,

17(4):347–366, Aug. 1988.


