
Adding Data Parallelism to Streaming Pipelines

for Throughput Optimization

Peng Li, Kunal Agrawal, Jeremy Buhler, Roger D. Chamberlain

Department of Computer Science and Engineering

Washington University in St. Louis

St. Louis, MO 63130

{pengli, kunal, jbuhler, roger}@wustl.edu

Abstract—The streaming model is a popular model for
writing high-throughput parallel applications. A streaming
application is represented by a graph of computation stages
that communicate with each other via FIFO channels. In
this paper, we consider the problem of mapping streaming
pipelines — streaming applications where the graph is a
linear chain — onto a set of computing resources in order
to maximize its throughput. In a parallel setting, subsets
of stages, called components, can be mapped onto different
computing resources. The throughput of an application is
determined by the throughput of the slowest component.
Therefore, if some stage is much slower than others, then
it may be useful to replicate the stage’s code and divide
its workload among two or more replicas in order to
increase throughput. However, pipelines may consist of
some replicable and some non-replicable stages. In this
paper, we address the problem of mapping these partially
replicable streaming pipelines onto both homogeneous and
heterogeneous platforms so as to maximize throughput.

We consider two types of platforms, homogeneous
platforms — where all resources are identical, and hetero-
geneous platforms — where resources may have different
speeds. In both cases, we consider two network topologies
— unidirectional chain and clique. We provide polynomial-
time algorithms for mapping partially replicable pipelines
onto unidirectional chains for both homogeneous and
heterogeneous platforms. For homogeneous platforms, the
algorithm for unidirectional chains generalizes to clique
topologies. However, for heterogeneous platforms, map-
ping these pipelines onto clique topologies is NP-complete.
We provide heuristics to generate solutions for cliques by
applying our chain algorithms to a series of chains sampled
from the clique. Our empirical results show that these
heuristics rapidly converge to near-optimal solutions.

I. INTRODUCTION

The streaming computation model has received con-

siderable attention in recent years, as it can exploit task

parallelism, data parallelism, and especially pipelined

parallelism to speed up computations. Streaming is

used to express high-throughput applications such as

audio and video processing, biological sequence or

astrophysics data analysis, and financial modeling. A

streaming computation is a directed graph with compu-

tational stages (vertices) connected by FIFO channels

(edges). Each stage runs a specified computation, which

repeatedly receives data on its incoming channels (from

its predecessors), computes on the data, and sends

output data on its output channels. In this work, we will

focus on mapping and scheduling streaming pipelines

— computations with linear chain topologies. Pipeline

topologies are common for streaming applications.

Given a streaming pipeline and a platform consisting

of a set of computing resources (i.e., processors) con-

nected via a network, a mapping algorithm is responsi-

ble for deciding which stage runs on which resource.

A platform is homogeneous if all its resources are

identical or heterogeneous if different resources have

different computational capacities. Because the various

stages of the pipeline must communicate with each

other, the topology of the platform plays a crucial role in

determining feasible mappings. We consider two types

of topologies: unidirectional chain, where resources are

connected in a linear fashion through one-way channels;

and clique, where all resources are connected to all

others with bi-directional channels. In this paper, we

consider the problem of mapping streaming applications

onto both homogeneous and heterogeneous platforms

connected in both chain and clique fashion.

A common goal of streaming computation mapping

algorithms is to maximize throughput, which is defined

as the number of incoming data items processed per unit

time in the steady state of the computation. Even if we

map each stage of a streaming pipeline to a different

resource, throughput is limited by the slowest stage.

In this paper, we focus on stage replication in order

to overcome barriers to higher throughput. Replicating

a stage means making more than one copy of the

stage, then running these copies on different resources,

thereby dividing the workload of this stage. Replication

introduces data parallelism into a streaming application.

We consider only replication strategies that are entirely

safe; that is, the streaming application after replication

should give exactly the same outputs in exactly the same

order as the original application.

We consider the general case of a pipeline where

some stages can safely be replicated, while others can-

not. If a stage keeps internal state and updates that state

during its computation, it is a stateful stage; otherwise,

it is stateless. (Note that a “stateless” stage might still

keep static state, which does not change during com-

putation.) If a stateful stage were replicated, different

copies of the stage would need to coordinate with each

other in order to maintain their states and so compute

correctly, which could be expensive. In addition, it

could be impossible to correctly maintain state with

replication for some types of stage. In contrast, stateless

states can be replicated with almost no overhead, since

the computation for a given input does not depend on

any previous computation; hence, all data items can be

processed independently in parallel. In this paper, we

assume all stateful stages to be non-replicable and all

stateless stages to be replicable.

��

Figure 1. Replicating a stage using split and join nodes S and J .

In practice, after a stage is replicated, a split node

and a join node are inserted into the streaming pipeline,

as Figure 1 shows. The split node collects data from

upstream and distributes them to the stage’s replicas,

while the join node collects data from the replicas

and sends them downstream. A split node might not

distribute data evenly to all replicas; instead, some

replicas might receive more data and thus do more

work than others to achieve load balancing. In this

paper, to simplify the computation model, we assume

that the computational costs of split and join nodes are

negligible and so ignore their overhead when choosing

a mapping. We also assume that communication can

be fully overlapped with computation and so do not

consider communication overhead.

In this paper, we devise mapping strategies for par-

tially replicable pipelines, where certain stages are

replicable while others are not. Our contributions are

as follows:

• For homogeneous platforms, we provide a

polynomial-time algorithm for mapping partially

replicable pipelines onto unidirectional chain

topologies. It turns out that cliques are not more

powerful, and the same algorithm works for them.

• For heterogeneous platforms, we provide a

polynomial-time algorithm for mapping onto

chains. Mapping onto cliques is NP-complete even

for non-replicable pipelines [1], [2], [3].

• We provide heuristics for mapping onto heteroge-

neous cliques, using our algorithm for chains as a

subroutine. Our empirical results indicate that these

heuristics perform reasonably well in practice.

• While our algorithm for mapping onto heteroge-

neous chains is polynomial, it has a high com-

plexity. We therefore provide an approximation

algorithm that is near-linear in the sizes of both

the pipeline and the platform.

II. RELATED WORK

Most prior works on maximizing throughput of

pipelines do not consider replication. Bokhari solved the

throughput optimization problem for pipeline mapping

by finding a minimum bottleneck path in a layered graph

that contains all information about application mod-

ules [4]. Hansen et al. later improved Bokhari’s solution

using dynamic programming [5]. For the case when

processors are homogeneous, many efficient algorithms

have been proposed, such as [6], [7], and [3]. However,

when some stages are replicable, these algorithms no

longer work as they rely on finite mapping bound-

aries. Some recent works provide complexity results

for mapping pipelines onto homogeneous and heteroge-

neous platforms, both with and without communication

costs [1], [2]. Agrawal et al. provided mapping solutions

for the problem when stages can filter data [8].

Replication has been considered in some limited

cases. Subhlok et al. considered a model where every

task can be perfectly parallelized on homogeneous

processors and provided mapping solutions for opti-

mizing throughput [9] as well as solutions for latency-

throughput trade-offs [10]. Recently, Kudlur et al. and

Cordes et al. used integer linear programming to extract

data parallelism from streaming pipelines [11], [12].

While they considered replication, they all assumed that

the work of replicated stages should be evenly divided

and assigned to replicas. In contrast, not all replicas

necessarily have the same amount of work in our model.

Several existing works have tried to maximize

pipeline throughput with empirical approaches. For ex-

ample, Gordon et al. developed heuristics to exploit data

parallelism in streaming programs by fusing stateless

filters [13]. Wang et al. proposed a machine learning-

based approach to mapping streaming applications on

multi-cores [14]. These approaches did not provide

optimality guarantees. Our method differs from them

in that we try to guarantee provable optimality.

III. PROBLEM FORMULATION

In this section, we precisely formulate the problem

of throughput-optimal mapping for partially replicable

pipelines. We also describe the target platform to which

a pipeline may be mapped, whose characteristics deter-

mine the complexity of the mapping problem.

Streaming Pipelines

A linear pipeline is a sequence of m stages S1 . . . Sm,

where each stage Si is connected via a communication

channel to the next stage Si+1. Each stage has a charac-

teristic work W (Si), which is the time taken to execute

the stage (each time it fires) on some fixed benchmark

processor. In addition, each stage Si has (integral)

input and output rates in(Si) and out(Si) specifying,

respectively, the number of data items consumed from

its incoming edge and the number of items emitted onto

its outgoing edge each time it fires. We assume, without

loss of generality, that the input rate in(S1) of the first

stage (the source) is always 1. We assume that the

pipeline follows the synchronous dataflow model [15],

where work and the input and output rates remain fixed

and are known in advance.

Definition 1. The gain g(Si) of stage Si is the number

of times Si fires every time the source stage S1 fires.

For a linear pipeline,

g(Si) =
i
∏

j=2

(in(Sj)/ out(Sj−1)) .

Definition 2. The normalized work w(Si) of stage Si

is the amount of work the stage does, on average, for

each input consumed by the source node of the pipeline.

From the preceding definitions, we have that

w(Si) = g(Si) ·W (Si) .

Note that a stage’s normalized work may be greater or

less than its work, depending on the gain of the stage.

Replication of Stages

If a stage is stateless, then it can be replicated by

adding a split node before the stage and a join node

after it. Without loss of generality, we assume that a

replicable stage is either at the beginning or the end of

the pipeline or has non-replicable stages on both sides.

This is due to the fact that consecutive replicable stages

can be merged into a single replicable stage [13].

When a stage is replicated, each replica is called a

node. The terms “stage” and “node” are interchangeable

for non-replicable stages. A node created as a replica

of stage Si has the same input and output rates and

the same work as Si. As noted previously, replication

involves the insertion of split and join nodes before and

after Si, which are assumed to do no work and to have

input and output rates of 1. A split node distributes its

inputs among replicas c1, c2, . . . of Si, with each replica

ck receiving a fraction fk of inputs such that
∑

k fk =
1. The gain of a split node is the gain of its predecessor;

the gain of replica ck is g(Si) · fk; and the gain of the

join node is g(Si). The normalized work for any node

is still defined as its gain multiplied by its work.

In formulating our mapping algorithms, we will not

explicitly refer to replication but instead will use the

concept of dividing replicable pipeline stages. The work

of a replicable stage can be divided among multiple

replicas, each of which can be mapped to a different

resource. The division need not be even; for example,

one replica may receive 80% of inputs to the stage, and

so do 80% of its work, while another does only 20%. In

principle, a replica may receive any real-valued fraction

of the stage’s work. In practice, there may be limits on

the granularity of work division; however, for long input

streams, there may still be hundreds or thousands of

distinct ways to divide a stage’s work, so the continuous

approximation remains useful.

Because we assume that the split and join nodes

needed to realize a replicated topology do no work,

and we ignore communication costs, we will treat a

replicated stage as simply being divided into pieces,

each of which does some fraction of the stage’s work.

We will refer to stages as being divisible or indivisible,

interchangeably with replicable or non-replicable.

Once a pipeline has undergone partial replication, the

resulting network of nodes is mapped onto resources.

Multiple nodes may be mapped to a single resource, in

which case they form a component. Nodes mapped to

a single resource are assumed to execute sequentially,

so the normalized work of a component is the sum of

the normalized works of its constituent nodes.

Optimization Problem

We seek to maximize throughput, which is defined as

the average number of inputs consumed by a pipeline

per unit time during steady-state computation. The

throughput of a pipeline is the inverse of its period τ , the

minimum time the source must wait between consuming

one input and the next to ensure that no stage receives

data items faster than it can process them. In this paper,

we describe algorithms in terms of period minimization,

which is equivalent to throughput maximization.

Suppose we have a set of homogeneous resources

P1 . . . Pn, such that the execution time of a stage on

one such resource determines its work. If a pipeline

is mapped onto these resources (perhaps with partial

replication), let w(Pj) be the normalized work of

the component executing on Pj . Then we have τ =
maxj w(Pj). If instead the resources are heterogeneous,

each resource Pj has some speed spj , which is defined

as a scaling factor relative to the benchmark processor

used to quantify work. In this case, we define the scaled

work of resource j to be w(Pj)/ spj , and we have

τ = maxj w(Pj)/ spj .

We now formally define the optimization problem ad-

dressed in this paper. We are given a linear pipeline with

m stages S1 . . . Sm, each with defined input rate, output

rate, and work. Each stage is labeled as either divisible

or indivisible. Our goal is to map this pipeline, possibly

with partial replication, onto n resources P1 . . . Pn with

speeds sp1 . . . spn, so as to minimize the period τ of

the resulting physical realization.

The minimum realizable period for any mapping

of a pipeline onto resources depends on the set of

feasible mappings, which depends on how resources

on the target platform are interconnected. We consider

constraints on feasible mappings in the next section.

Feasible Mappings

Two common types of constraint on feasible map-

pings for streaming pipelines are unconstrained map-

ping and contiguous or convex mapping. In uncon-

strained mapping, any arbitrary combination of stages

may be mapped onto a single resource, while in con-

tiguous mapping, each resource receives a contiguous

interval of stages from the pipeline.

Unconstrained mapping permits more choices among

mappings, but it has two drawbacks. First, the phys-

ical dataflow graph is not acyclic, potentially leading

to pitfalls such as deadlocks. Second, communication

between resources increases; in contiguous mappings,

only the links that cross components lead to physical

communication, while for non-contiguous mappings,

all links potentially cause communication. Even for

multicore machines with no physical links, one can

show that contiguous mappings minimize the number

of cache misses [16]. Moreover, contiguous mappings

are a 2-approximation of unconstrained mappings on

homogeneous platforms [2]. Though we do not consider

communication overhead in this paper, we will nonethe-

less focus on contiguous mappings as a practically

useful constraint on our solution space.

In the presence of replication, we extend the defini-

tion of contiguous mapping as follows. A mapping of

nodes in a replicated pipeline to resources is contiguous

if for some topological ordering of the pipeline’s nodes,

the mapping is contiguous in the sense described above,

as Figure 2a shows. This constraint preserves the rela-

tive order of a stage’s replicas with the stages before

and after them and so ensures that, as for a simple

pipeline, the physical dataflow graph resulting from the

mapping is acyclic. On the other hand, a mapping that

maps stages S1, S21 and S3 onto the same resource and

S22 onto another resource would not be contiguous.

When we think about mappings in term of division

rather than replication, conceptually, a contiguous map-

ping places boundaries between components at various

points in the pipeline, either at one end of a stage or

inside a divisible stage. When a boundary is within a

divisible stage such that f1 fraction of the divisible stage

is on the left and f2 is on the right, we create two

replicas of the stage, where the first replica is in the

left component and receives f1 fraction of the stage’s

work, and the other replica is in the right component

and receives f2 fraction of the work.

Target Platform Topology

A pipeline’s mapping must be feasible given the

physical interconnections among resources on the target

platform. In particular, the physical dataflow graph

cannot include an edge from Pi to Pj if there is no

channel to carry the data on this edge. Moreover, if some

channels are unidirectional, the mapping must respect

this fact; the graph cannot include an edge from Pi to

Pj if the only available channel goes from Pj to Pi.

In this paper, we focus on mappings to target plat-

forms whose resources are interconnected in one of two

ways: a unidirectional chain, or a clique (i.e. all pos-

sible bidirectional connections among resources). The

unidirectional chain is a simple topology that permits

tractable optimization; moreover, it is a natural platform

on which to realize pipelines of abstract stages. The

clique interconnect is typical of distributed systems to-

day, in which all processing elements are logically fully

connected, no matter the actual physical interconnect.

The reader may ask how a pipeline with replicated

stages can be mapped onto a unidirectional chain of

resources. We assume that, when necessary, data items

can be forwarded from earlier to later resources in the

chain without communication overhead. Alternatively,

if the chain was extracted from a clique topology, there

are already forwarding channels that can be used to by-

pass intermediate resources where necessary. Figure 2b

visualizes these two cases.

S3

S22

S1

S21

P2 P3P1

x� S3 mapped onto P3

x� Split-join nodes not shown

P2 P3P1

P2

P3P1

x� S1 and S21 mapped onto P1

x� S22 mapped onto P2

Case 1: data forwarded in chain Case 2: chain is part of clique

(a) Mapping

(b) Communication

Figure 2. Replicated stages mapped onto unidirectional chains.

For a target with homogeneous resources, there is

effectively no difference between the chain and clique

interconnects because every unidirectional chain of a

given length embedded within the clique is identical to

every other. Hence, we may choose one such chain from

the clique arbitrarily. This equivalence among chains

does not hold for heterogeneous resources, since each

chain may consist of resources with distinct speeds

arranged in a distinct order. Hence, there are really three

versions of the problem for contiguous mappings:

• mapping a pipeline onto (WLOG) a unidirectional

chain of homogeneous resources;

• mapping a pipeline onto a unidirectional chain of

heterogeneous resources;

• mapping a pipeline onto a clique of heterogeneous

resources.

Since we assume that the pipeline follows the syn-

chronous dataflow model, a bounded-memory schedule

can be found efficiently based on the mapping. We omit

the details in this paper due to space considerations.

IV. THROUGHPUT OPTIMIZATION ON

HOMOGENEOUS PLATFORMS

In this section, we discuss throughput optimization

on homogeneous platforms, in which all resources have

the same speed. We address mapping onto unidirectional

chains, which, as discussed in Section III, extends

WLOG to homogeneous cliques.

If all pipeline stages are indivisible, the mapping

problem is easily solved in polynomial time via dynamic

programming [5]. The general subproblem considers a

triple (i, j, k), where pipeline stages i to j inclusive

must be mapped onto k contiguous resources in the

chain. The number of such subproblems is O(m2n).
If, however, some pipeline stages are divisible, we

now have an unbounded number of choices for how to

divide stages among resources. If we are to transfer the

dynamic programming approach to the new problem,

we need a basis for limiting the number of choices. To

do so, we begin with the following definition.

Definition 3. A mapping of a partially replicable

pipeline to resources is a said to be a perfectly divided

mapping (PDM) if each resource’s component has

the same scaled work. That is, for each resource Pi,

w(Pi)/ spi must be the same.

For homogeneous platforms, a PDM implies that each

resource’s component has the same normalized work.

Any given pipeline may or may not have a PDM. For

example, Figure 3a shows a pipeline with five stages

with normalized works 1, 4, 2, 6, and 1, such that only

the second and fourth stages are divisible. This pipeline

has a contiguous PDM onto four identical resources,

each of which receives normalized work 3.5. The second

stage is divided into two pieces of sizes 0.625 and 0.375,

while the fourth is divided into pieces of sizes roughly

0.583 and 0.417. By contrast, Figure 3b shows a slightly

modified pipeline with normalized works 1, 2, 4, 6,

and 1, respectively. This pipeline has no contiguous

PDM onto four identical resources. In general, it is

straightforward to check in time O(m + n) whether a

given partially replicable pipeline of m stages has a

contiguous PDM onto n resources.

x
x

x
x

x
x

x
x

xx
xx

x
x

(a) PDM exists

(b) PDM does not exist

divisible

xx
xxindivisible

Figure 3. Pipelines with and without perfectly divided mappings
onto 4 resources. Length of each stage’s box is proportional to its
normalized work. Vertical arrows indicate component boundaries.

If a given pipeline has a PDM onto a set of re-

sources, that PDM achieves the minimal period among

all mappings and hence is throughput-optimal, since

no resource is a bottleneck relative to any other. If

such a PDM does not exist, we now show that we can

effectively subdivide the mapping problem.

Theorem IV.1. (Fixed-boundary Theorem) If a par-

tially replicable pipeline lacks a PDM for a given set

of resources, then some throughput-optimal mapping of

the pipeline has an internal component boundary at one

end of an indivisible stage.

Proof: We proceed by contradiction. Suppose the

pipeline has no PDM, and let M be a throughput-

optimal mapping of it with period τ . If M has an

internal boundary at one end of an indivisible stage, we

are done. Otherwise, every internal boundary in M lies

inside a divisible stage. Since M is not a PDM, there

must be some bottleneck stage Pk, i.e. a stage with

normalized work τ , that is adjacent to a non-bottleneck

stage that does less work. WLOG, assume that Pk+1

does less work than Pk. Then we can move back the

boundary between the components on Pk and Pk+1,

thereby transferring a nonzero amount of work from

the former to the latter.

If Pk held the only component with normalized work

τ , we have improved the mapping M , which contra-

dicts its optimality. Otherwise, we repeat the boundary

moving operation on the remaining components with

normalized work τ until all have been improved, and

we again achieve contradiction.

Theorem IV.1 shows that if there is no PDM for

a given pipeline, then we can subdivide the problem

for dynamic programming purposes by finding the

best mapping with a component boundary at each end

of each indivisible stage, then keeping the best of

these mappings. In more detail, let OPT DM[i, j, k]

denote the period of a throughput-optimal mapping

of pipeline stages i..j onto k resources. To compute

OPT DM[i, j, k], we first check if there is a PDM for

i..j onto k resources. If so, we are done; otherwise, we

enumerate the boundaries of indivisible stages between

the start of stage i and the end of stage j. For each such

boundary b, we subdivide the stages i..j around b and

consider all ways of allocating the k resources to the two

resulting subproblems, keeping the best result found.

Pseudocode for this method is provided in Algorithm 1.

Algorithm 1: Throughput-Optimal Mapping on Ho-

mogeneous Platforms

Input: Pipeline, # resources

Output: Period of throughput-optimal mapping for

the pipeline

let m be the number of pipeline stages

let n be the number of resources

return DP HELPER(1,m, n)

Function: DP HELPER(i, j, k)

Input: Pipeline segment, # resources

Output: Period of throughput-optimal mapping for

the segment

if i = j then

if Si is indivisible then
OPT DM[i, j, k] ← w(Si)

else
OPT DM[i, j, k] ← w(Si)/k

else if OPT DM[i, j, k] not yet computed then

if PDM exists with period τ then
OPT DM[i, j, k] ← τ

else
index stage x’s boundaries as x and x+ 1
let B be boundaries of indivisible stages

Bij ← {x | i < x ≤ j and x ∈ B}
OPT DM[i, j, k] ←∞
foreach b ∈ Bij do

for r ← 1 to k − 1 do
τ1 ← DP HELPER(i, b− 1, r)

τ2 ← DP HELPER(b, j, k − r)

τ ← max(τ1, τ2)
if τ < OPT DM[i, j, k] then

OPT DM[i, j, k] ← τ
return OPT DM[i, j, k]

Given m stages and n resources, there are O(m2n)
calls to DP HELPER(). Each call takes time at most

O(mn) to compute in addition to its recursive calls, so

the total time complexity is O(m3n2).

V. THROUGHPUT OPTIMIZATION ON

CHAIN-CONNECTED HETEROGENEOUS PLATFORMS

In this section, we extend the results of the previ-

ous section to unidirectional chains of heterogeneous

resources. We first show that Algorithm 1 can be

modified to address this case, then give a practically

much faster approximation algorithm to find a solution

that is provably near-optimal.

Optimal Mapping Algorithm

For heterogeneous resources, a perfectly divided map-

ping (PDM) onto resources must take the speed of each

resource into account. Nevertheless, it is still feasible to

check in time O(m+ n) whether a partially replicable

pipeline of m stages has a PDM onto a given chain of

n resources, since the amount of normalized work to

be allocated to each resource is easily computable, and

the order of resources is fixed. Moreover, the proof of

Theorem IV.1 goes through unaltered, because it merely

requires that one be able to move a component boundary

so as to remove (scaled) work from one resource and

add it to the adjacent resource; the work added and

removed need not be equal. Hence, we again conclude

that, if no PDM exists, there must be a throughput-

optimal mapping with an internal component boundary

at one end of an indivisible stage.

The recurrence of Algorithm 1 needs to be mod-

ified to account for heterogeneous resources. In the

recurrence for the homogeneous case, each subprob-

lem OPT DM[i, j, k] was parametrized by a range of

pipeline stages and a number of resources. Any con-

tiguous interval of k resources yielded an equivalent

solution. In the heterogeneous case, mapping to different

contiguous intervals of k resources, each with its own

speed, results in realizations with different periods.

To account for this extra complexity, we modify the

recurrence to compute subproblems OPT DM[i, j, p, q],

where p..q, 1 ≤ p ≤ q ≤ n, is a contiguous interval

of resources onto which we map stages i..j. The full

problem is now to compute OPT DM[1,m, 1, n], and

the subproblems are of the form OPT DM[i, j, p, q],

where the optimal period is potentially different for

each p..q. Each call to DP HELPER() still considers

O(mn) cases, but the total number of subproblems is

now O(m2n2), for a total running time of O(m3n3).

Fast (1 + ǫ)-Approximation Algorithm

The time complexity of the dynamic programming

algorithm for throughput-optimal mappings, particularly

in the heterogeneous case, is high, making it impractical

for large m and/or n. In this section, we describe

an asymptotically faster approximation algorithm that

obtains a mapping whose period is within a factor 1+ ǫ

of the optimum, for any desired ǫ. The algorithm is

based on the dual approximation scheme [17].

Consider a pipeline of m stages S1 . . . Sm mapped to

a set of (in general heterogeneous) resources P1 . . . Pn.

We will show how to quickly answer the question “does

the pipeline have a mapping to these resources with

period at most τ?” Given this test as a subroutine, we

can approximate the actual optimal period τ∗ to within

any multiplicative factor 1 + ǫ as follows.

1) First, observe that τ∗ ≥ τ̂ , where

τ̂ =

∑

i
w(Si)

∑

j spj

.

2) Next, use exponential search, starting with τ = τ̂
and doubling τ each time, to find the first period

τ̄ for which the test succeeds. We know that τ̄ ≤
2τ∗.

3) Finally, use binary search on the interval (τ̄ /2, τ̄]
to reduce the difference between the greatest

period for which the test is known to fail and the

least period τu for which it is known to succeed

to at most ǫ · τ̂ . Return τu as the estimate of τ∗.

Observe that the final upper bound τu is at most

τ∗ + ǫ · τ̂ ≤ (1 + ǫ)τ∗.

We now develop the test for whether a pipeline can

be mapped to a given set of resources with period at

most τ . We use the following greedy algorithm. Starting

from the beginning of the pipeline, move the first com-

ponent’s right boundary to the right (i.e. downstream)

until the normalized work allocated to the first resource

is τ · sp1, or the end of the pipeline is reached. If

the boundary falls inside an indivisible stage, move it

back to the beginning of the stage. Finally, recursively

execute this algorithm on the remainder of the pipeline

and the remaining resources in the chain. If all work

in the pipeline can be mapped to at most n resources

with this algorithm, return “true”; else return “false”.

Pseudocode for this procedure, called VERIFYPERIOD,

is given in Algorithm 2.

Claim V.1. Algorithm 2 correctly determines whether

the pipeline can be mapped to the given resources with

period at most τ .

Proof: The algorithm never allocates more than τ ·
spj normalized work to the jth resource. Hence, every

resource is assigned scaled work at most τ , and so, if

the pipeline is completely mapped (i.e. the algorithm

returns “true”), the period of the mapping is at most τ .

Conversely, suppose that there exists a mapping M
with period at most τ . We will show that M can

be transformed into the mapping found by the greedy

algorithm while maintaining a period of at most τ . We

proceed by induction on the number of resources n.

Bas: if n = 1, then M assigns all stages to resource P1;

hence, the greedy algorithm can also assign all stages

to this resource while achieving the same period ≤ τ .

Ind: The mapping M assigns normalized work at most

τ · sp1 to resource P1. If it assigns exactly this much

work, or the boundary of P1’s component is at the

start of an indivisible stage that, if added, would cause

the P1’s normalized work to exceed τ · sp1, then the

component is the same as that assigned by the greedy

algorithm. Otherwise, M assigns strictly less work to

P1 than the greedy algorithm, and we may move work

from later components back to P1’s component until it

matches the greedy algorithm’s result. Now consider the

portion of the pipeline not mapped to P1, and let M ′ be

the induced mapping of this remainder onto resources

P2 . . . Pn after the above transformation. Clearly, M ′

also has period at most τ ; hence, by the inductive

hypothesis, we can reallocate its work among P2 . . . Pn

to match the greedy algorithm’s result.

Conclude that for any number of resources, M can be

transformed to the greedy mapping while maintaining

period at most τ , and so the algorithm will return “true”.

Finally, we analyze the time complexity of this ap-

proximation algorithm. Each invocation of VERIFYPE-

RIOD for a given τ runs in time O(m+n). The number

of invocations needed for the exponential phase of the

search is O(log(τ
∗

τ̂
)), while the number needed for the

binary phase is

O

(

log

(

1

ǫ
·
τ∗

τ̂

))

.

Now the ratio τ∗/τ̂ is at most n, since there is always

a feasible solution that maps all pipeline stages to the

single fastest resource, resulting in a period at most

n times τ̂ . Conclude that the total number of search

steps is O(log(1
ǫ
) + log n). Hence, for any fixed ǫ, the

complexity of the full algorithm is O((m+ n) log n).

VI. THROUGHPUT OPTIMIZATION ON FULLY

CONNECTED HETEROGENEOUS PLATFORMS

In this section, we address the problem of map-

ping partially replicable pipelines onto heterogeneous

cliques. As mentioned in Section I, mapping even a non-

replicable pipeline onto a fully connected heterogeneous

clique is NP-complete [1], [3]. In this section, we

therefore turn to heuristic algorithms. We first explain

the ideas behind our heuristics, then present some

empirical results demonstrating their effectiveness.

Heuristics for Heterogeneous Cliques

A clique with n distinct resources has n! permuta-

tions of unidirectional resource chains. For each chain,

we can use the dynamic programming algorithm of

Algorithm 2: VerifyPeriod

Input: Pipeline, resources, target period

Output: True or False

Function: VERIFYPERIOD(Π, P1 . . . Pn, τ)

/* Π is a pipeline of stages */

if n = 0 then

if Π is empty then
return True

else
return False

else
set right boundary b of component in Π to

assign normalized work τ · sp1, or all

remaining work if less, to P1.

if b lies inside an indivisible stage then
move b to the left boundary of this stage

let Π′ be the unmapped remainder of pipeline

VERIFYPERIOD(Π′, P2 . . . Pn, τ)

Section V to compute an optimal mapping in poly-

nomial time, but finding the global optimum requires

n! such calls. We attempted to exhaustively optimize

over 8! chains for a 40-stage pipeline and found that

the computation required six days on a 2.2-GHz AMD

Opteron processor. This brute-force approach scales

poorly and may be impractical for mapping onto large

numbers of resources. We therefore devise heuristics to

find good, if not optimal, mappings. We consider three

heuristic approaches: random sampling, hill climbing,

and simulated annealing.

In the random sampling heuristic, we sample random

resource chains from the clique and compute an optimal

mapping of the pipeline to each chain, keeping the best

mapping found. This is the simplest strategy.

In hill climbing, we start with an arbitrary resource

chain, then incrementally improve the solution by gen-

erating a new chain from the previous one. We call

this process bottleneck alleviation. Suppose we have a

mapping in which Pi has speed spi and is assigned work

w(Pi). Say the period of the mapping is τ = w(Pi)/ spi

(that is, Pi is a bottleneck). We try to find another

resource Pj which can alleviate this bottleneck. This

happens if Pj with speed spj and assigned work w(Pj)
satisfies w(Pi)/ spj < τ and w(Pj)/ spi < τ . In this

case, we can swap Pi and Pj in the chain and obtain a

new chain. If Pi was the only bottleneck resource in the

old solution, then we have strictly reduced the period. In

any cases, the period does not increase. We may be able

to further improve the period by computing an optimal

mapping onto the new chain.

After a few steps, hill climbing typically reaches a

local optimum for which no resource swap leads to a

better solution. To continue exploring chains, we must

restart the climbing process from some other chain.

We tried several restarting policies, including restarting

from a random chain and restarting from a neighboring

chain, but found no significant variation in performance

among them. We finally adopted an adaptive restarting

policy, in which we randomly choose a chain whose

distance (in terms of number of resource swaps) from

the initial chain grows as we explore more chains.

Simulated annealing [18] is a generic method that

mimics how atoms in a heated metal adjust their popula-

tion during the cooling process. It explores the solution

space by iteratively attempting to move from the current

solution to a neighboring one. If the neighbor is better,

the search will move to it; if the neighbor is worse, the

search will still move to it with a probability determined

by the current “temperature” and the objective value

difference between the two solutions. The higher the

temperature, the more likely the move. The temperature

gradually drops until, when it reaches zero, the algo-

rithm behaves equivalently to hill-climbing.

Experimental Setup

In Section V, we described two algorithms to map

a pipeline onto a heterogeneous chain: an exact algo-

rithm with time complexity O(m3n3), and a (1 + ǫ)-
approximation algorithm. Note that we must use one

of these chain algorithms as a subroutine for both

our brute-force search and heuristic search. On our

hardware, using the exact method proved impractical

even for the heuristic search. Therefore, we use the

approximation algorithm with ǫ = 0.01 for all the

following results.

We generated three test cases: test case 1 with 20

stages and 8 resources (7 divisible, 13 not divisible),

test case 2 with 50 stages and 16 resources (13 divisible,

37 not divisible), and test case 3 with 100 stages and

32 resources (28 divisible, 72 not divisible). Although

it is impossible to cover all application scenarios, the

three test cases demonstrate the effectiveness of our

algorithms for reasonably large inputs. For each test

case, we wanted to compute the optimal mapping using

a brute force search in order to quantify the results from

the heuristics. For the 20-stage, 8-resource test case, we

simply used brute-force enumeration of chains together

with the approximation algorithm with ǫ = 0.01. How-

ever, solving the 16-resource test case would take an

estimated 241 CPU-years by this method. For the larger

test cases, we bypassed this huge computational cost by

changing a few stages from “stateful” to “stateless”, so

that a perfectly divided mapping, which is guaranteed

to be optimal, was known a priori to exist for some

resource chain.

Experimental Results

Table I compares the mean periods (± one standard

deviation) achieved by different methods and the time

spent in computing for each test case. BF, RS, HC, and

SA stand for the brute-force search, random sampling,

hill climbing, and simulated annealing, respectively. We

do not have timing results for brute force search for the

larger pipelines, since it would have taken too long,

and we simply tweaked the pipelines to be perfectly

divisible. We ran each heuristic with a fixed number of

iterations, where each iteration explores one chain. The

iteration count was 2,000 for test case 1, 20,000 for

test case 2, and 100,000 for test case 3. Beyond these

iteration counts, the three heuristics perform similarly,

and performances are improved very slowly.

Figures 4, 5, and 6 illustrate the performance of the

heuristics on the three test cases with different numbers

of iterations. The number of iterations is plotted on

the x-axis, and the best period found is on the y-

axis. We repeated each computation 100 times with

different random seeds to estimate the variability in each

heuristic’s performance. The curves show the average

period values found by the heuristics after each number

of iterations. Whiskers on the data points represent the

standard deviation. (We avoid making claims of error

bars since we have no reason to expect the distribution

to be Gaussian.) The horizontal line in each figure is

the near-optimal period for the test case (determined

using brute force search with the approximation chain

algorithm for the smallest test case, and determined

using the PDM algorithm for the larger test cases).

The three heuristics all performed similarly, finding

mean solutions that achieve 1.05× of the optimal pe-

riod within 2,000 iterations. For the smallest test case,

they all found the optimal solution. Random sampling

performed slightly better in the mean than the other

two; however, the variation between the techniques

is substantially smaller than the variation within each

technique (i.e., the separation between the means is

smaller than their individual standard deviations).

VII. CONCLUSION

We have presented algorithms for mapping partially

replicable pipelines onto homogeneous and heteroge-

neous platforms. We show that polynomial-time dy-

namic programming algorithms can yield optimal re-

sults for homogeneous platforms and for heteroge-

neous chains. For heterogeneous cliques, where no

polynomial-time algorithm likely exists, we have pre-

sented heuristics, and our empirical results show that

these heuristics find near-optimal solutions quickly.

Our algorithms can arbitrarily divide replicable tasks

to achieve optimal or near-optimal throughput, which

previous algorithms cannot do.

Figure 4. Test case 1: 20 stages and 8 resources.

Figure 5. Test case 2: 50 stages and 16 resources.

There are many directions for future work. First, we

would like to incorporate communication costs into the

model while deciding the mappings. Second, we want

to reduce the complexity of the dynamic programming-

based algorithms proposed in this paper. Third, even

though the heuristics of Section VI perform well in prac-

tice, they provide no theoretical guarantees. We would

like to design approximation algorithms for mapping

onto heterogeneous cliques.

REFERENCES

[1] A. Benoit and Y. Robert, “Mapping pipeline skeletons
onto heterogeneous platforms,” J. Parallel Distrib. Com-
put., vol. 68, no. 6, pp. 790–808, Jun. 2008.

[2] K. Agrawal, A. Benoit, and Y. Robert, “Mapping linear
workflows with computation/communication overlap,” in
Proc. of 14th IEEE Int’l Conf. on Parallel and Dis-
tributed Systems, 2008, pp. 195–202.

Table I
AN OVERVIEW OF RESULTS.

Test Case 1 Test Case 2 Test Case 3
Period Time Period Time Period Time

BF 16.13 9.22s 15.83 N/A 16.47 N/A

RS 16.13± 2× 10
−14 0.47s 16.17± 0.08 9.01s 17.07± 0.08 85.79s

HC 16.13± 2× 10
−14 0.52s 16.21± 0.13 9.33s 17.08± 0.16 86.44s

SA 16.13± 2× 10
−14 0.47s 16.18± 0.09 9.00s 17.08± 0.08 85.06s

Figure 6. Test case 3: 100 stages and 32 resources.

[3] A. Pınar and C. Aykanat, “Fast optimal load balancing
algorithms for 1d partitioning,” Journal of Parallel and
Distributed Computing, vol. 64, no. 8, 2004.

[4] S. H. Bokhari, “Partitioning problems in parallel,
pipeline, and distributed computing,” IEEE Trans. on
Computers, vol. 37, no. 1, pp. 48–57, Jan. 1988.

[5] P. Hansen and K.-W. Lih, “Improved algorithms for par-
titioning problems in parallel, pipelined, and distributed
computing,” IEEE Trans. on Computers, vol. 41, no. 6,
pp. 769 –771, Jun. 1992.

[6] H.-A. Choi and B. Narahari, “Algorithms for mapping
and partitioning chain structured parallel computations,”
in ICPP (1), 1991, pp. 625–628.

[7] B. Olstad and F. Manne, “Efficient partitioning of se-
quences,” Computers, IEEE Transactions on, vol. 44,
no. 11, pp. 1322–1326, 1995.

[8] K. Agrawal, A. Benoit, F. Dufoss, and Y. Robert,
“Mapping filtering streaming applications,” Algorith-
mica, vol. 62, pp. 258–308, 2012.

[9] J. Subhlok and G. Vondran, “Optimal mapping of se-
quences of data parallel tasks,” in Proc. of 5th ACM
SIGPLAN Symp. on Principles and Practice of Parallel
Programming, 1995, pp. 134–143.

[10] ——, “Optimal latency-throughput tradeoffs for data
parallel pipelines,” in Proc. of 8th ACM Symp. on Par-
allel Algorithms and Architectures, 1996, pp. 62–71.

[11] M. Kudlur and S. Mahlke, “Orchestrating the execution
of stream programs on multicore platforms,” in Proc.
of ACM SIGPLAN Conf. on Programming Language
Design and Implementation, 2008, pp. 114–124.

[12] D. Cordes, A. Heinig, P. Marwedel, and A. Mallik, “Au-
tomatic extraction of pipeline parallelism for embedded
software using linear programming,” in Proc. of IEEE
17th Int’l Conf. on Parallel and Distributed Systems,
2011, pp. 699–706.

[13] M. I. Gordon, W. Thies, and S. Amarasinghe, “Exploit-
ing coarse-grained task, data, and pipeline parallelism
in stream programs,” in Proc. of 12th Int’l Conf. on
Architectural Support for Programming Languages and
Operating Systems, 2006, pp. 151–162.

[14] Z. Wang and M. F. O’Boyle, “Partitioning streaming
parallelism for multi-cores: a machine learning based
approach,” in Proceedings of the 19th international
conference on Parallel architectures and compilation
techniques. ACM, 2010, pp. 307–318.

[15] E. A. Lee and D. G. Messerschmitt, “Synchronous data
flow,” Proceedings of the IEEE, vol. 75, no. 9, pp. 1235–
1245, Sep. 1987.

[16] K. Agrawal, J. Fineman, J. Krage, C. Leiserson, and
S. Toledo, “Cache-conscious scheduling of streaming ap-
plications,” in Proc. of ACM Symposium on Parallelism
in Algorithms and Architectures, 2012.

[17] D. S. Hochbaum and D. B. Shmoys, “Using dual approx-
imation algorithms for scheduling problems: theoretical
and practical results,” Journal of the ACM (JACM),
vol. 34, no. 1, pp. 144–162, 1987.

[18] S. Kirkpatrick, C. D. Gelatt, Jr., and M. P. Vecchi,
“Optimization by simulated annealing,” Science, vol.
222, no. 4598, pp. 671–680, May 1983.

