Internet of Things: Research Issues

Washington University in St. Louis
Saint Louis, MO ns
NSF Applications and Services Workshop, Washington DC,
January 27, 2016

These slides are available on-line at:
http://www.cse.wustl.edu/~jain/talks/iot_nsf.htm
Overview

1. A Layered Model of IoT and Smart Cities
2. Areas of Research for IoT
3. IoT Security
4. Trends: Computation in the Edge, Multi-Cloud
5. Software Defined Multi-Cloud Application Mgmt
Trend 1: Smart Everything

<table>
<thead>
<tr>
<th>Smart Watch</th>
<th>Smart TV</th>
<th>Smart Car</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Smart Health</th>
<th>Smart Home</th>
<th>Smart Kegs</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Smart Space</th>
<th>Smart Industries</th>
<th>Smart Cities</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
What’s Smart?

- Old: Smart = Can think \implies Can compute
- Now: Smart = Can Communicate = Networking
- Smart Grid, Smart Meters, Smart Cars, Smart homes, Smart Cities, Smart Factories, Smart Smoke Detectors, …
A 7-Layer Model of IoT

- **Services**: Energy, Entertainment, Health, Education, Transportation, …
- **Apps and SW**: SDN, SOA, Collaboration, Apps, **Clouds**
- **Analytics**: Machine learning, predictive analytics, Data mining, …
- **Integration**: Sensor data, Economic, Population, GIS, …
- **Interconnection**: DECT/ULE, WiFi, Bluetooth, ZigBee, NFC, …
- **Acquisition**: Sensors, Cameras, GPS, Meters, Smart phones, …
- **Market**: Smart Grid, Connected home, Smart Health, Smart Cities, …
A 7-Layer Model of Smart Cities

- **Infrastructure**
 - Roads, Trains, Buses, Buildings, Parks, …

- **Acquisition**
 - Sensors, Cameras, GPS, Meters, Smart phones, …

- **Interconnection**
 - DECT/ULE, WiFi, Bluetooth, ZigBee, NFC, …

- **Integration**
 - Sensor data, Economic, Population, GIS, …

- **Analytics**
 - Machine learning, predictive analytics, Data mining, …

- **Apps and SW**
 - SDN, SOA, Collaboration, Apps, Clouds

- **Services**
 - Energy, Entertainment, Health, Education, Transportation, water, …

Washington University in St. Louis
http://www.cse.wustl.edu/~jain/talks/iot_nsf.htm
©2016 Raj Jain
Areas of Research for IoT/Smart Cities

1. PHY: Smart devices, sensors giving real-time information
2. Datalink: WiFi, Bluetooth, ZigBee, IEEE 802.15.4, …
 Broadband: DSL, FTTH, Wi-Fi, 5G, …
3. Routing: Mesh networking, …
4. Analytics: Big-data, data mining, Machine learning, Predictive analytics, …
5. Apps & SW: SDN, SOA, Cloud computing, Web-based collaboration, Social networking, …
6. Applications: Remote health, On-line education, on-line laboratories, …
7. Security: Privacy, Trust, Identity, Anonymity, …
IoT is a Data ($) Mine

Ref: https://www.pinterest.com/iofficecorp/humor/
Washington University in St. Louis http://www.cse.wustl.edu/~jain/talks/iot_nsf.htm
Top Inhibitors to the Adoption of the IoT

Washington University in St. Louis
http://www.cse.wustl.edu/~jain/talks/iot_nsf.htm
Imagine, as researchers did recently at Black Hat, someone hacking your connected toilet, making it flush incessantly and closing the lid repeatedly and unexpectedly.

Washington University in St. Louis http://www.cse.wustl.edu/~jain/talks/iot_nsf.htm
Current IoT Security

- **HP Study**
 - 80% had privacy concerns
 - 70% lacked encryption
 - 60% had insecure updates

- **Symantec Study:**
 - 1/5th of Apps did not use SSL (Secure transfers)
 - None of the devices provided mutual (gateway) authentication
 - No lock-out/delaying measures against repeated attacks
 - Common web application vulnerabilities
 - Firmware upgrades were not encrypted

Ref: http://fortifyprotect.com/HP_IoT_Research_Study.pdf
Ref: M. Barcena and C. Wueest, “Insecurity in the Internet of Things,” Symantec, March 2015,
IoT Security: Popular Approach

I have finished studying other companies’ IoT Security strategies. “Close your eyes and hope for the best!” seems to be the most popular.

Washington University in St. Louis http://www.cse.wustl.edu/~jain/talks/iot_nsf.htm
Attack Surface

1. **IoT Devices**
2. **IoT wireless access technology**: DECT, WiFi, Z-wave, …
3. **IoT Gateway**: Smart Phone
4. **Home LAN**: WiFi, Ethernet, Powerline, …
5. **IP Network**: DNS, Routers, …
6. **Higher-layer Protocols**
7. **Cloud**
8. **Management Platform**: Web interface
9. **Life Cycle Management**: Booting, Pairing, Updating, …
Past: Data in the Edge

- To serve world-wide users, latency was critical and so the data was replicated and brought to edge
Trend: Computation in the Edge

- To service mobile users/IoT, the computation needs to come to edge ⇒ Micro-cloud on the tower ⇒ Mobile-Edge Computing
Trend: Multi-Cloud

- Larger and infrequent jobs serviced by local and regional clouds ⇒ Fog Computing
Past: Software Defined Networking

- Network can be managed w/o worrying about individual device hardware

![Diagram of network management](network_diagram.png)
Trend: Software Defined Multi-Cloud Application Delivery

Multi-Cloud Application Manager

Application Developer/Manager/User

Users

Network

©2016 Raj Jain

http://www.cse.wustl.edu/~jain/talks/iot_nsf.htm

Washington University in St. Louis
Trend: Adaptive Everything

- Smart = Connected
- Adaptive = Machine Learning
 Aka “Intelligent”
 Aka “Autonomous”
- Adaptive Security
- Proactive fault diagnosis
Trend: Personal Clouds

- **Digital Mesh**: All “Things” belonging to a person
 - Computing and communication, Wearables, transportation
 - Social interactions, Communities, Business, …
- Analytics of information, machine learning
- **Personal Clouds** ⇒ “Smart” personal environments
- Autonomous Personal Assistants ⇒ Predicts personal needs
- Same applies to families, communities, and cities
Hype Cycle of Emerging Technologies 2015

Washington University in St. Louis http://www.cse.wustl.edu/~jain/talks/iot_nsf.htm ©2016 Raj Jain
Summary

1. IoT research areas are easy via the 7-layer model
2. IoT has brought in research issues in every layer: Sensors, datalink, routing, applications, analytics.
3. Security and privacy are most important
4. Computation is moving to the Edge ⇒ Fog Computing ⇒ Mobile-Edge Computing
5. SDN concepts need to move up a layer – from Virtualizing routers to Virtualizing clouds
Recent Papers

Recent Papers (Cont)

 http://www.cse.wustl.edu/~jain/papers/vm_dist.htm
Recent Talks

Acronyms

- GB
 Gigabyte

- IEEE
 Institution of Electrical and Electronic Engineering

- IETF
 Internet Engineering Task Force

- IoT
 Internet of Things

- IP
 Internet Protocol

- IRTF
 Internet Research Task Force

- ITU
 International Telecommunications Union

- LAN
 Local Area Network

- LTE
 Long Term Evolution

- MHz
 Mega Hertz

- OpenADN
 Open Application Delivery Networking

- SDN
 Software Defined Networking

- TCP
 Transmission Control Protocol

- TV
 Television

- VM
 Virtual Machine

- WAN
 Wide Area Network

- WiFi
 Wireless Fidelity

Washington University in St. Louis
http://www.cse.wustl.edu/~jain/talks/iot_nsf.htm
©2016 Raj Jain