Worst Case Buffer Requirements for TCP over ABR

Bobby Vandalore, Shiv Kalyanaraman, Raj Jain, Rohit Goyal, Sonia Fahmy

Raj Jain is now at Washington University in Saint Louis Jain@cse.wustl.edu

http://www.cse.wustl.edu/~jain/

The Ohio State University

- Why ATM
- □ ABR and ERICA
- □ TCP over ABR/ERICA
- Generating Worst Case TCP Traffic
- Analytical/simulation Results

Why ATM?

- □ ATM vs IP: Key Distinctions
 - □ Traffic Management: Explicit Rate vs Loss based
 - □ Signaling: Coming to IP in the form of RSVP
 - □ PNNI: QoS based routing
 - □ Switching: Coming soon to IP
 - □ Cells: Fixed size or small size is not important

Old House vs New House

□ New needs:

Solution 1: Fix the old house (cheaper initially)

Solution 2: Buy a new house (pays off over a long run)

The Ohio State University

TCP over ABR: Buffering

- Buffering depends heavily upon switch scheme.
- □ For the ERICA scheme and the traffic loads considered:
 - □ W/o VBR, 3×RTT buffers will do for any number of TCP sources
 - □ In general, $Qmax = a \times RTT + b \times Averaging$ Interval + $c \times Feedback delay + d \times fn(VBR)$
- After TCP sources are rate-limited:
 Switch queues become zero, source queues build up

Worst Case TCP Traffic

- □ Sources can retain high ACR, if they send packets within 500 ms.
- Many such sources with high ACR can dump a large amount of data
- Worst case is when all the sources dump the maximum window size

Worst Case (Cont)

- Each source sends one packet every 't' milliseconds. t < 500 ms.
- ☐ After several packets, the congestion window reaches the maximum for each source
- Sources synchronize and dump large burst at the same time.
- □ To avoid overload initially, the sources are uniformly spaced \mathbf{P} kth source sends its first packet at ' $k \times g$ ' μ s.

The Ohio State University

N-Source Configuration

- □ All links 149.76 Mbps. Lengths x = 2000, 1000 km
- All traffic unidirectional. Worst case TCP traffic
- □ Parameters: # of sources={2, 3, 5, 10, 20, 30, ..., 200} Infinite buffer size.

The Ohio State University

Analytical results

- Buffer requirement is reflected in maximum switch queue size.
- □ Let cwnd_max = Max congestion window of TCP
- \square When $N \leq \lfloor t/g \rfloor$
 - □ Max Q length \approx N × cwnd_max/48 (formula 1)
- □ When $N > \lfloor t/g \rfloor$

L48 bytes/cell

□ Max Q length = N*PCR*t (PCR is peak cell rate)

(formula 2)

Queue length is given in terms of number of cells

Analytical results (Cont)

- With few sources, switch does not get congested even when sources reach their maximum window, ACRs can be high. Formula 1 applies here.
- With many sources, switch detects congestion and gives feedback. ACRs are low. Formula 2 applies here.

Simulation Parameters

■ Source: Parameters selected to maximize ACR

$$TBE = 512$$

$$CDF(XDF) = 0.5$$

$$ICR = 10 \text{ Mbps}$$

$$CRM (Xrm) = \lceil TBE/Nrm \rceil$$

$$ADTF = 0.5 \text{ sec}$$

$$PCR = 149.76 \text{ Mbps}, MCR = 0, RIF (AIR) = 1,$$

$$Nrm = 32$$
, $Mrm = 2$, $RDF = 1/512$, $Trm = 100ms$,

$$TCR = 10 \text{ c/s}$$

- □ Traffic: TCP/IP with worst case traffic
- □ Switch: ERICA+

Averaging interval = $min\{100 \text{ cells}, 1000 \mu s\}$

The Ohio State University

Effect of Number of Sources

# TCP	Q Size (Cells)			
Srcs	Simul.	Analyt.		
2	1575	2730 4095		
3	3149			
5	6297	6825		
10	14131	13650		
20	29751	27300		
30	20068	11010		
40	19619	14680		
50	24162	18350		
60	28006	22020		

# TCP	Q Size (Cells)					
Srcs	Simul.	Analyt.				
70	30109	25690				
80	31439	29360				
90	34530	33030				
100	38088	36700				
120	44939	44040				
140	44744	51380				
160	48880	58720				
180	49961	66060				
200	55618	73400				

The Ohio State University

Effect of # of Sources (Cont)

The Ohio State University

Effect of # of Sources (Cont)

- □ Analytical results: For t = 1 ms, g = 50 μ s, MSS = 512 bytes, cwnd_max = 64 kB
 - $\square Q = N*1365 \qquad \text{for } N \le 20 \text{ (formula 1)}$
 - $\square Q = N*367 \qquad \text{for } N > 20 \text{ (formula 2)}$
- ☐ The zig-zag shape is due to the two formulas
- □ The simulation agrees well with the analytical results for $N \le 20$.
- □ The maximum queues occurred at predicted times (details in the contribution)

Effect of # of Sources (Cont)

- □ Buffer size increases linearly as number of sources increase
- □ As N increases, load increases
 - \Rightarrow ERICA+ controls the queue lengths \Rightarrow Less than analytical queue lengths

Sensitivity Analysis

	#	mss/g/t/d	N=3	N=10	N=30	N=40	N=50	N=100	
	1	512/50/1/1000	3171	14273	20068	19619	24162	35687	
	2	512/50/1/2000	3171	14273	19906	27567	30872	75083	
	3	512/50/10/1000	3172	14274	45994	61854	77714	150453	
	4	512/50/10/2000	3172	14274	45994	61854	77714	150458	
	5	512/100/1/1000	3171	14273	19283	20080	24164	NA	
	6	512/100/1/2000	3171	14273	21241	32314	35961	NA	
	7	512/100/10/1000	3172	14274	45994	61854	77714	NA	
	8	512/100/10/2000	3172	14274	45994	61854	77714	NA	
	9	1024/50/1/1000	3040	13680	18650	18824	23542	NA	
	10	1024/50/1/2000	1542	5612	19131	22934	29163	NA	
	11	1024/50/10/1000	3040	13680	44080	59280	74480	NA	
	12	1024/50/10/2000	3041	13681	44081	59281	74481	NA	
	13	1024/100/1/1000	3040	13680	18591	19600	24314	NA	
	14	1024/100/1/2000	1403	5556	17471	24412	30533	NA	
	15	1024/100/10/1000	3040	13680	44080	59280	74480	NA	
	16	1024/100/10/2000	3041	13681	44081	59281	74481	NA	
Th	The Ohio State University Raj								

Sensitivity Analysis: Results

- MSS = 512, 1024 bytes, t = 1, 10 ms, g = 50, 100 µs, Link distance = 1000, 2000 km Two values for each of the 4 parameters \Rightarrow 16 experiments.
- Segment size does not affect queue sizes
- ☐ If the network is not overloaded then round trip time has no effect (Expt. 3 and 4)
- □ If the network is overloaded then a larger round trip gives larger queue lengths (Expt. 1, 2 for N = 30, 40, 50)

The Ohio State University

- □ Traffic management distinguishes ATM from other high-speed protocols
- □ ABR pushes congestion to edges.
 Buffering depends upon the switch algorithm
- □ ERICA requires 3×RTT buffering for TCP

Summary (Cont)

- □ In worst case, the buffer requirements depend on the number of sources, network congestion status (overloaded or underloaded) and round trip time
- □ It is not affected by maximum segment size.

Our Contributions and Papers

- All our contributions and papers are available on-line at
 - http://www.cis.ohio-state.edu/~jain/
- □ See Recent Hot Papers for tutorials.

Thank You!

The Ohio State University