Virtualization and Software Defined Networking (SDN) for Multi-Cloud Computing

SDN = Separation of Control and Data Planes
SDN = OpenFlow
SDN = Standard Southbound API
SDN = Centralization of control plane
SDN = Separation of Control and Data Planes

RAJ JAIN
Washington University in Saint Louis
Saint Louis, MO 63130, Jain@cse.wustl.edu
IP Infusion, Bangaluru, Sept 18, 2014

These slides and video recording of this presentation are at:
http://www.cse.wustl.edu/~jain/talks/apf_ipf.htm
Overview

1. Five concepts/events that have changed the networking world: Virtualization, Cloud, Smart Phones, SDN, NFV
2. What really is SDN?: SDN 1.0 vs. SDN 2.0
3. Network Function Virtualization
4. Mobile Apps ⇒ Global Cloud of Clouds
1. Virtualization

- Internet ⇒ Virtualization

- No need to get out for
 - Office
 - Shopping
 - Education
 - Entertainment

- Virtual Workplace
- Virtual Shopping
- Virtual Education
- Virtual Sex
Virtualization

“Virtualization means that Applications can use a resource without any concern for where it resides, what the technical interface is, how it has been implemented, which platform it uses, and how much of it is available.”

-Rick F. Van der Lans

in Data Virtualization for Business Intelligence Systems
5 Reasons to Virtualize

1. Sharing: Break up a large resource
 Large Capacity or high-speed
 ⇒ Multi-Tenant

2. Isolation: Protection from other tenants

3. Aggregating: Combine many resources in to one

4. Dynamics: Fast allocation,
 Change/Mobility, Follow the sun (active users) or follow the moon (cheap power)

5. Ease of Management
 ⇒ Cost Savings. fault tolerance
2. Cloud Computing

- *Web Services To Drive Future Growth For Amazon* ($2B in 2012, $7B in 2019)
 - Forbes, Aug 12, 2012

- Cloud computing was made possible by computing virtualization

- **Networking**: Plumbing of computing
 - IEEE: Virtual Bridging, …
 - IETF: Virtual Routers, …
 - ITU: Mobile Virtual Operators, …
Why Virtualize a Network?

1. Network virtualization allows tenants to form an overlay network in a multi-tenant network such that tenant can control:
 1. Connectivity layer: Tenant network can be L2 while the provider is L3 and vice versa
 2. Addresses: MAC addresses and IP addresses
 3. Network Partitions: VLANs and Subnets
 4. Node Location: Move nodes freely

2. Network virtualization allows providers to serve a large number of tenants without worrying about:
 1. Internal addresses used in client networks
 2. Number of client nodes
 3. Location of individual client nodes
 4. Number and values of client partitions (VLANs and Subnets)

3. Network could be a single physical interface, a single physical machine, a data center, a metro, … or the global Internet.

4. Provider could be a system owner, an enterprise, a cloud provider, or a carrier.
Levels of Network Virtualization

- Each of these needs to be virtualized.
Network Virtualization Techniques

<table>
<thead>
<tr>
<th>Entity</th>
<th>Partitioning</th>
<th>Aggregation/Extension/Interconnection**</th>
</tr>
</thead>
<tbody>
<tr>
<td>NIC</td>
<td>SR-IOV</td>
<td>MR-IOV</td>
</tr>
<tr>
<td>Switch</td>
<td>VEB, VEPA</td>
<td>VSS, VBE, DVS, FEX</td>
</tr>
<tr>
<td>L2 Link</td>
<td>VLANs</td>
<td>LACP, Virtual PortChannels</td>
</tr>
<tr>
<td>L2 Network using L2</td>
<td>VLAN</td>
<td>PB (Q-in-Q), PBB (MAC-in-MAC), PBB-TE, Access-EPL, EVPL, EVP-Tree, EVPLAN</td>
</tr>
<tr>
<td>L2 Network using L3</td>
<td>NVO3, VXLAN, NVGRE, STT</td>
<td>MPLS, VPLS, A-VPLS, H-VPLS, PWoMPLS, PWoGRE, OTV, TRILL, LISP, L2TPv3, EVPN, PBB-EVPN</td>
</tr>
<tr>
<td>Router</td>
<td>VDCs, VRF</td>
<td>VRRP, HSRP</td>
</tr>
<tr>
<td>L3 Network using L1</td>
<td></td>
<td>GMPLS, SONET</td>
</tr>
<tr>
<td>L3 Network using L3*</td>
<td>MPLS, GRE, PW, IPSec</td>
<td>MPLS, T-MPLS, MPLS-TP, GRE, PW, IPSec</td>
</tr>
<tr>
<td>Application</td>
<td>ADCs</td>
<td>Load Balancers</td>
</tr>
</tbody>
</table>

*All L2/L3 technologies for L2 Network partitioning and aggregation can also be used for L3 network partitioning and aggregation, respectively, by simply putting L3 packets in L2 payloads.

**The aggregation technologies can also be seen as partitioning technologies from the provider point of view.
Names, IDs, Locators

Name: John Smith
ID: 012-34-5678
Locator:
1234 Main Street
Big City, MO 12345
USA

- Locator changes as you move, ID and Names remain the same.

- **Examples**:
 - Names: Company names, DNS names (Microsoft.com)
 - IDs: Cell phone numbers, 800-numbers, Ethernet addresses, Skype ID, VOIP Phone number
 - Locators: Wired phone numbers, IP addresses
Fallacies Taught in Networking Classes

1. Ethernet is a local area network (Local ≤ 2km)
2. Token ring, Token Bus, and CSMA/CD are the three most common LAN access methods.
3. Ethernet uses CSMA/CD.
 No CSMA/CD in 10G and up
 No CSMA/CD in practice now even at home or at 10 Mbps
4. Ethernet bridges use spanning tree for packet forwarding.
5. Ethernet frames are limited to 1518 bytes.
6. Ethernet does not provide any delay guarantees.
7. Ethernet has no congestion control.
8. Ethernet has strict priorities.

Ethernet has changed.
All of these are now false or are becoming false.
Residential vs. Data Center Ethernet

<table>
<thead>
<tr>
<th>Residential</th>
<th>Data Center/Cloud</th>
</tr>
</thead>
<tbody>
<tr>
<td>Distance: up to 200m</td>
<td>No limit</td>
</tr>
<tr>
<td>Scale:</td>
<td>Millions of MAC Addresses</td>
</tr>
<tr>
<td>➢ Few MAC addresses</td>
<td>Millions of VLANs Q-in-Q</td>
</tr>
<tr>
<td>➢ 4096 VLANs</td>
<td></td>
</tr>
<tr>
<td>Protection: Spanning tree</td>
<td>Rapid spanning tree, … (Gives 1s, need 50ms)</td>
</tr>
<tr>
<td>Path determined by spanning tree</td>
<td>Traffic engineered path</td>
</tr>
<tr>
<td>Simple service</td>
<td>Service Level Agreement. Rate Control.</td>
</tr>
<tr>
<td>Priority</td>
<td>Need per-flow/per-class QoS</td>
</tr>
<tr>
<td>➔ Aggregate QoS</td>
<td></td>
</tr>
<tr>
<td>No performance/Error monitoring (OAM)</td>
<td>Need performance/BER</td>
</tr>
</tbody>
</table>
Spanning Tree and its Enhancements

- Helps form a tree out of a mesh topology
- A topology change can result in 1 minute of traffic loss with STP ⇒ All TCP connections break
- Rapid Spanning Tree Protocol (RSTP) IEEE 802.1w-2001 incorporated in IEEE 802.1D-2004
- One tree for all VLANs ⇒ Common spanning tree
- Many trees ⇒ Multiple spanning tree (MST) protocol IEEE 802.1s-2002 incorporated in IEEE 802.1Q-2005
- One or more VLANs per tree.
Shortest Path Bridging

- IEEE 802.1aq-2012
- Allows all links to be used ⇒ Better CapEx
- IS-IS link state protocol (similar to OSPF) is used to build shortest path trees for each node to every other node within the SPB domain
- Equal-cost multi-path (ECMP) used to distribute load

vSwitch

- **Problem**: Multiple VMs on a server need to use one physical network interface card (pNIC)
- **Solution**: Hypervisor creates multiple vNICs connected via a virtual switch (vSwitch)
- pNIC is controlled by hypervisor and not by any individual VM
- **Notation**: From now on prefixes p and v refer to physical and virtual, respectively. For VMs only, we use upper case V.

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/talks/apf_ipf.htm

©2014 Raj Jain
Virtual Bridging

Where should most of the tenant isolation take place?

1. VM vendors: S/W NICs in Hypervisor w Virtual Edge Bridge (VEB) (overhead, not ext manageable, not all features)

2. Switch Vendors: Switch provides virtual channels for inter-VM Communications using virtual Ethernet port aggregator (VEPA): **802.1Qbg** (s/w upgrade)

3. NIC Vendors: NIC provides virtual ports using Single-Route I/O virtualization (SR-IOV) on PCI bus
Planes of Networking

- **Data Plane**: All activities involving as well as resulting from data packets sent by the end user, e.g.,
 - Forwarding
 - Fragmentation and reassembly
 - Replication for multicasting

- **Control Plane**: All activities that are necessary to perform data plane activities but do not involve end-user data packets
 - Making routing tables
 - Setting packet handling policies (e.g., security)

<table>
<thead>
<tr>
<th>Dest.</th>
<th>Output Port</th>
<th>Next Hop</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Ref: Open Data Center Alliance Usage Model: Software Defined Networking Rev 1.0,”
Separation of Control and Data Plane

- Control logic is moved to a central controller
- Switches only have forwarding elements
- One expensive controller with a lot of cheap switches
- OpenFlow is the protocol to send/receive forwarding rules from controller to switches
SDN 1.0: SDN Based on OpenFlow

- SDN originated from OpenFlow
- Centralized Controller
 ⇒ Easy to program
 ⇒ Change routing policies on the fly
 ⇒ Software Defined Network (SDN)
- Initially, SDN = OpenFlow
What is SDN?

- All of these are mechanisms.
- SDN is not about a mechanism.
- It is a framework to solve a set of problems ⇒ Many solutions

SDN = OpenFlow
SDN = Standard Southbound API
SDN = Centralization of control plane
SDN = Separation of Control and Data Planes
What do We need SDN for?

1. **Virtualization**: Use network resource without worrying about where it is physically located, how much it is, how it is organized, etc.
2. **Orchestration**: Manage thousands of devices
3. **Programmable**: Should be able to change behavior on the fly.
4. **Dynamic Scaling**: Should be able to change size, quantity
5. **Automation**: Lower OpEx
6. **Visibility**: Monitor resources, connectivity
7. **Performance**: Optimize network device utilization
8. **Multi-tenancy**: Sharing expensive infrastructure
9. **Service Integration**
10. **Openness**: Full choice of Modular plug-ins
11. **Unified management** of computing, networking, and storage
SDN 2.0: OpenDaylight Style SDN

- **NO-OpenFlow** (Not Only OpenFlow) Multi-Protocol
- New work in IETF XMPP, ALTO, I2RS, PCEP, ...
- Linux Foundation

Diagram Details

- **Northbound APIs**
 - RESTful API
 - OSGi Framework

- **Network Service Functions**
 - Slicing Manager
 - Topology Manager
 - Host Tracker

- **Network Orchestration Function**

- **Management Function**

- **Controller API (Java, REST)**
 - Controller 1
 - Controller 2
 - Controller 3

- **Service Abstraction Layer (SAL)**
 - PCEP
 - SMTP
 - XMPP
 - BGP
 - OpFlex
 - OpenFlow V1.0
 - OpenFlow V1.4

- **Network Elements**
 - Network Element
 - Network Element
 - Network Element

- **Southbound Protocols**
 - Protocol Plug-ins

- **Overlay Tunnels** (VxLAN, NVGRE, ...)

http://www.cse.wustl.edu/~jain/talks/apf_ipf.htm
Open Everything

- Open Networking Foundation
- OpenFlow
- OpenStack
- OpenDaylight
- Open Access
- Open Source
Current SDN Debate: What vs. How?

- SDN is easy if control plane is centralized but not necessary. Distributed solutions may be required for legacy equipment and for fail-safe operation.

- Complete removal of control plane may be harmful. Exact division of control plane between centralized controller and distributed forwarders is yet to be worked out.

- SDN is easy with a standard southbound protocol like OpenFlow but one protocol may not work/scale in all cases.
 - Diversity of protocols is a fact of life.
 - There are no standard operating systems, processors, routers, or Ethernet switches.

- If industry finds an easier way to solve the same problems by another method, that method may win. E.g., ATM vs. MPLS.
How to SDN?
Separation vs. Centralization

Separation of Control Plane

Centralization of Control Plane

Micromanagement is not scalable
5. Network Function Virtualization (NFV)

1. Fast standard hardware ⇒ **Software based Devices**
 Routers, Firewalls, Broadband Remote Access Server (BRAS) ⇒ A.k.a. *white box* implementation

2. **Virtual Machine implementation**
 ⇒ Virtual appliances
 ⇒ All advantages of virtualization (quick provisioning, scalability, mobility, Reduced CapEx, Reduced OpEx, …)

Service-Infrastructure Separation

- With cloud computing, anyone can super-compute on demand.
 - Physical infrastructure is owned by Cloud Service Provider (CSP). Tenants get virtual infrastructure
 - **Win-Win** combination

- With virtualization, an ISP can set up all virtual resources on demand
 - Physical Infrastructure owned by NFV infrastructure service provider (NSP) and tenant ISPs get virtual NFVI services
 - **Win-Win** combination
Micro-Clouds on Cell-Towers

New Business Opportunities: Domain 2.0, Datacenters on Towers, IoT, NFV, FV, Elastic Networks

Washington University in St. Louis http://www.cse.wustl.edu/~jain/talks/apf_ipf.htm ©2014 Raj Jain
Any Function Virtualization (FV)

- Network function virtualization of interest to Network service providers
- But the same concept can be used by any other industry, e.g., financial industry, banks, stock brokers, retailers, mobile games, …
- Everyone can benefit from:
 - Functional decomposition of their industry
 - Virtualization of those functions
 - Service chaining those virtual functions (VFs)
 ⇒ A service provided by the next gen ISPs
Carrier App Market: Lower CapEx

Virtual IP Multimedia System

Available on the App Store

amazon.com and you’re done. App Store

200,000 AVAILABLE APPS
Most companies use more than one cloud.

Washington University in St. Louis http://www.cse.wustl.edu/~jain/talks/apf_ipf.htm ©2014 Raj Jain
Services in a Cloud of Clouds

AppFabric Platform

Northbound Interface

Application Service Providers

Application Developers

Application Architects

Application Deployment Administrators

AppFabric Application Service (AAS) abstraction
AppFabric Application Workflow (AAW) abstraction
AppFabric Application Cloud (AAC) abstraction

AppFabric Resource Driver (OpenStack)
AppFabric Resource Driver (OpenDaylight)
AppFabric Resource Driver (EC2)

Virtual Hosts
Virtual Storage
Virtual Network

Virtual WAN Services

OpenStack
OpenDaylight
EC2

Resource Providers

Cloud Datacenter

ISP Network

Network POP Micro-Datacenters

Enterprise Datacenter

Application Architects

Application Deployment Administrators

Application Service Providers

Services in a Cloud of Clouds
10 SDN Research Issues

1. Centralization → Reliability → Distributed Controllers, Controller Synchronization
2. Performance of Controllers: Scalability, Caching
3. Multi-controller Load balancing, Latency Minimization
5. SDN in a Multi-Domain Environment: Hierarchical Organization of Policy Control
6. SDN in Specific Applications: High-Performance Computing, Network Virtualization, Big Data, IoT
7. Live traffic monitoring and fault detection in the Data Plane
8. Rules consistency checking
9. Live network reconfiguration and optimization
10. Security in data plane

Note: This is not a complete list.
Summary

1. Virtualization is revolutionizing networking. NFV allows virtual mobile services using virtual modules in a shared cloud environment ⇒ Key to CapEx OpEx reduction.

2. SDN is about centralized policy control. Separation of control plane is not necessary.

3. Virtual functions useful not only for networking but also for all other global enterprises and games ⇒ New business opportunity for FV Infrastructure service

4. AppFabric allows customers to select multiple clouds from different providers and share wide area network infrastructure and specify their policies
References