Network Virtualization and Application Delivery Using Software Defined Networking

RAJ JAIN

Project Leader: Subharthi Paul
Washington University in Saint Louis
Saint Louis, MO 63130
Jain@cse.wustl.edu

Invited Talk at Huawei Strategy and Technology Workshop
Santa Clara, CA, March 19, 2013

These slides and audio/video recordings are available at:
http://www.cse.wustl.edu/~jain/talks/adn_hw.htm
Overview

1. Five Reasons for Virtualization
2. Five Networking Virtualization Technologies
3. Five Innovations of SDN
4. Our Research: Open Application Delivery
Virtualization of Life

- Internet ⇒ Virtualization

- No need to get out for
 - Office
 - Shopping
 - Entertainment
 - Education

- Virtual Workplace
- Virtual Shopping
- Virtual Education
- Virtual Sex
- Virtual Computing
5 Reasons to Virtualize

1. Sharing: Break up a large resource. Large Capacity or high-speed.
2. Isolation: Protection from other tenants.
3. Aggregating: Combine many resources into one.
4. Dynamics: Fast allocation, Change/Mobility, load balancing.
5. Ease of Management ⇒ Cost Savings. fault tolerance.

http://www.cse.wustl.edu/~jain/talks/adn_hw.html
Virtualization in Computing

- **Storage:**
 - Virtual Memory ⇒ L1, L2, L3, ... ⇒ Recursive
 - Virtual CDs, Virtual Disks (RAID), Cloud storage

- **Computing:**
 - Virtual Desktop ⇒ Virtual Server ⇒ Virtual Datacenter
 - Thin Client ⇒ VMs ⇒ Cloud

- **Networking:** Plumbing of computing
 - Virtual Channels, Virtual LANs, Virtual Private Networks
 - Quick review of recent technologies for network virtualization

©2013 Raj Jain
Levels of Network Virtualization

- Networks consist of: **Host Interface** - L2 Links - **L2 Bridges** - **L2 Networks** - L3 Links - L3 Routers - L3 Networks – **Data Centers** – **Global Internet**
- Each of these needs to be virtualized
1. vNICs

- Each VM needs its own network interface card (NIC)

```
  Hypervisor
  ↑
  pM

  vM1            vM2
  ↓               ↓
  vNIC1          vNIC2
  ↓               ↓
  vSwitch

  pNIC

  pM
  ↓
  pSwitch

  pNIC

p = Physical
v = Virtual
M = Machine
```

[Diagram showing vNICs and their relation to hypervisor and physical network interface (pNIC) and physical switch (pSwitch).]
vNICs (Cont)

1. VM vendors: S/W NICs in Hypervisor w Virtual Ethernet Bridge (VEB) (overhead, not ext manageable, not all features)

2. NIC Vendors: NIC provides virtual ports using Single-Route I/O virtualization (SR-IOV) on PCI bus

3. Switch Vendors: Switch provides virtual channels for inter-VM Communications using virtual Ethernet port aggregator (VEPA): 802.1Qbg (s/w upgrade), 802.1Qbh (new switches)
2. Bridge Port Extension

- Multiple physical bridges to make a single virtual bridge with a large number of ports
 ⇒ Easy to manage and configure

- IEEE 802.1BR
3. Multi-Tenants

- Each tenant needs its own networking domain with its VLAN IDs

1. Virtual Extensible Local Area Networks (VXLAN)
2. Network Virtualization using Generic Routing Encapsulation (NVGRE)
3. Stateless Transport Tunneling Protocol (STT)

⇒ Network Virtualization over L3 (NVO3) group in IETF
4. Multi-Site

- Better to keep VM mobility in a LAN (IP address changes if subnet changes)

- Solution: IP encapsulation
- Transparent Interconnection of Lots of Links (TRILL)
5. Clouds and Mobile Apps

- June 29, 2007: Apple announced iPhone ⇒ Birth of Mobile Internet, Mobile Apps
 - Almost all services are now mobile apps: Google, Facebook, Bank of America, …
 - Almost all services need to be global (World is flat)
 - Almost all services use cloud computing

Networks need to support efficient service setup and delivery
Service Center Evolution

1. Single Server

2. Data Center

Load Balancers
SSL Off Loaders
Application Replication, Partitioning

3. Multi-Cloud

Global Internet

Need to make the global Internet look like a data center
Application Delivery in a Data Center

- **Replication**: Performance and Fault Tolerance
 - If Load on S1 > 0.5, send to S2
 - If link to US broken, send to UK

- **Content-Based Partitioning**:
 - Video messages to Server S1
 - Accounting to Server S2

- **Context Based Partitioning**:
 - Application Context: Different API calls
 - Reads to S1, Writes to S2
 - User Context:
 - If Windows Phone user, send to S1
 - If laptop user, send to HD, send to S2

- **Multi-Segment**: User-ISP Proxy-Load Balancer-Firewall-Server
Application Delivery in Multi-Clouds

- Multi-Cloud: Cloud services provided by different CSPs
 - Required for cloud market to grow
- Internet connecting the clouds is operated by ISP
 - ISP cannot do application based routing
 (e.g., content-based partitioning)
 - Cannot look at the content (privacy)
- Only static partitioning possible by rotating DNS
 - Middle boxes and servers implemented in VM.
 - Location too dynamic for DNS.

Washington University in St. Louis http://www.cse.wustl.edu/~jain/talks/adn_hw.htm ©2013 Raj Jain
Google appliances in Tier 3 ISPs
Details of Google WAN are not public
ISPs can not use it: L7 proxies require data visibility

Google WAN

- Google L7 Proxy
- Network POP
- Google Data Center #1
- Google Data Center #2

Access ISP

#1

#2

Washington University in St. Louis
http://www.cse.wustl.edu/~jain/talks/adn_hw.htm

©2013 Raj Jain
Our Solution: OpenADN

- Open Application Delivery Networking Platform
 Platform = OpenADN aware clients, servers, switches, and middle-boxes
- Allows Application Service Providers (ASPs) to quickly setup services on Internet using cloud computing ⇒ Global datacenter
OpenADN: 5 Innovations

1. Uses the latest in networking:
 1. Software defined networking
 2. OpenFlow

2. Cross-Layer Communication
 OpenADN tags: Layer 7 Proxies without layer 7 visibility (MPLS like Labels => APLS)

3. ID/Locator Split

4. Late Multi-stage binding

5. Rule-Based Delegation

Ref: S. Paul, Raj Jain, "OpenADN: Mobile Apps on Global Clouds Using OpenFlow and Software Defined Networking,"
First Int. workshop on Management and Security technologies for Cloud Computing (ManSec-CC) 2012, December 7, 2012,
Washington University in St. Louis http://www.cse.wustl.edu/~jain/talks/adn_hw.htm
SDN Definition: 5 Innovations

1. Separation of Control and Data Plane
2. Flow Based Control
3. Centralization of Control Plane
4. Programmability of Control Plane
5. Standard API’s between Planes
1. Separation of Control and Data Plane

- Control Plane = Making forwarding tables
- Data Plane = Using forwarding tables
- Once vs. Billion times per second, Complex vs. fast
- One expensive controller with lots of cheap switches
2. Flow-based control

- Data/disk/Memory sizes are going up by Moore’s Law
- Packet size has remained 1518 bytes since 1980
- Multimedia, big data \Rightarrow Packet Trains
- Flow is defined by L2-L4 headers
- Decide once, use many times \Rightarrow Execution performance

<table>
<thead>
<tr>
<th>Match Fields</th>
<th>Priority</th>
<th>Counters</th>
<th>Instructions</th>
<th>Timeouts</th>
<th>Cookie</th>
</tr>
</thead>
</table>

Packet + Byte Counters

- Forward to Port n
- Encapsulate and forward to controller
- Drop
- Send to normal processing pipeline
- Modify fields

<table>
<thead>
<tr>
<th>In Port</th>
<th>VLAN ID</th>
<th>Ethernet</th>
<th>IP</th>
<th>TCP</th>
<th>& Mask</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>SA</td>
<td>DA</td>
<td>Type</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>SA</td>
<td>DA</td>
<td>Proto</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Src</td>
<td>Dst</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

http://www.cse.wustl.edu/~jain/talks/adn_hw.htm
3. Centralization of Control Plane

- Consistency
- Fast Response to changes
- Easy management of lots of devices

Centralized vs. Distributed
4. Programmable Control Plane

- Policies can be changed on the fly
 \(\Rightarrow\) Software Defined
5. Standardized API between planes

- Independent development of hw/control/applications
- Commoditization of HW/Control/Application
- South-Bound API: OpenFlow

NOX | Beacon | Maestro | Floodlight | Helios

Network Controller Software

Forwarding HW

OpenFlow

Forwarding HW

Northbound API

Southbound API
SDN Impact

- Why so much industry interest?
 - Commodity hardware
 ⇒ Lots of cheap forwarding engines ⇒ Low cost
 - Programmability ⇒ Customization
 - Those who buy routers, e.g., Google, Amazon, Docomo, DT will benefit significantly

- Tsunami of software defined devices:
 - Software defined wireless base stations
 - Software defined optical switches
 - Software defined routers
Life Cycles of Technologies

Potential

Research Hype Dis illusionment Success or Failure

Time

SDN ATM MPLS
Industry Growth: Formula for Success

- Paradigm Shifts \Rightarrow Leadership Shift
- Old market leaders stick to old paradigm and loose
- Mini Computers \Rightarrow PC, Phone \Rightarrow Smart Phone, PC \Rightarrow Smart Phone

Number of Companies

- Innovators \Rightarrow Startups \Rightarrow Technology Differentiation
- Big Companies Manufacturing \Rightarrow Price differentiation

Time

New Entrants \rightarrow Consolidation \rightarrow Stable Growth

Washington University in St. Louis http://www.cse.wustl.edu/~jain/talks/adn_hw.htm ©2013 Raj Jain
OpenADN in SDN’s Layered Abstractions

- SDN provides standardized mechanisms for distribution of control information
- OpenADN aware devices use enhanced OpenFlow

ISP's Controller
ISP
Middle-boxes

ASP 1's Controller
ASP 2's Controller

Northbound API

Southbound API

DATA PLANE CONTROL PLANE APPLICATIONS

Network Controller Software

OpenFlow OpenADN

Forwarding HW

Forwarding HW

Forwarding HW

ISP

OpenADN Aware
Legacy (OpenADN Unaware)

ISP's Controller

Policies

Policies

©2013 Raj Jain

http://www.cse.wustl.edu/~jain/talks/adn_hw.htm
Key Features of OpenADN

1. Edge devices only. Core network can be current TCP/IP based, OpenFlow or future SDN based
2. Coexistence (Backward compatibility): Old on New. New on Old
3. Incremental Deployment
4. Economic Incentive for first adopters
5. Resource owners (ISPs) keep complete control over their resources

Most versions of Ethernet followed these principles. Many versions of IP did not.
Summary

1. Cloud computing ⇒ Virtualization of computing, storage, and networking
 ⇒ Numerous recent standards related to networking virtualization both in IEEE and IETF

2. Recent Networking Architecture Trends:
 1. Centralization of Control plane
 2. Standardization of networking abstractions
 ⇒ Software Defined Networking (SDN)
 3. Most networking devices will be software defined

3. OpenADN enables delivery of applications using North-bound SDN API