Middleware Architecture for Cloud Based Services
This work has been supported under the grant ID NPRP 6 - 901 - 2 - 370 for the project entitled “Middleware Architecture for Cloud Based Services Using Software Defined Networking (SDN)”, which is funded by the Qatar National Research Fund (QNRF).
Overview

1. Global Multi-Cloud Application Delivery
2. Relevance to Qatar’s Research Grand Challenges
3. Novelty/Originality
4. Methods and Results
5. Significance and Impact

These slides and video recording of this presentation are at http://www.cse.wustl.edu/~jain/talks/adn_arc.htm
What’s Common?
What’s Common?

All are based in Qatar
All are multi-national
All use cloud computing
Trend: Explosion of Cloud Based Services

- June 29, 2007: Apple announced iPhone ⇒ Birth of Mobile Internet, Mobile Apps
- Most businesses now have mobile apps: Qatar Airways, Qatar National Bank, Ooredoo, …
- Almost all services use cloud computing (Easy management)
- Almost all services need to be global (World is flat)

Washington University in St. Louis http://www.cse.wustl.edu/~jain/talks/adn_arc.htm ©2014 Raj Jain
Multi-Cloud Application Delivery

New Business Opportunities: Datacenters on Towers, Internet of Things

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/talks/adn_arc.htm

©2014 Raj Jain
- Google appliances in Tier 3 ISPs
- Details of Google WAN are not public
- ISPs can not use it: L7 proxies require data visibility
Our Solution: OpenADN

- Open Application Delivery Networking Platform
 = OpenADN aware clients, servers, switches, and middle-boxes

- Allows Application Service Providers (ASPs) to quickly setup services on Internet using cloud computing ⇒ Global datacenter

![Diagram showing OpenADN connectivity]
Application Delivery in a Data Center

- **Replication**: Performance and Fault Tolerance
- **Content-Based Partitioning**:
 - Video messages to Server S1
 - Accounting to Server S2
- **Context Based Partitioning**:
 - Network Context:
 - If link to US broken, send to UK
 - Application Context:
 - Reads to S1, Writes to S2
 - If Load on S1 >0.5, send to S2
 - User Context:
 - If Windows Phone user, send to S1
 - If laptop user, send to HD, send to S2
- **Multi-Segment**: User-ISP Proxy-Load Balancer-Firewall-Server

Washington University in St. Louis http://www.cse.wustl.edu/~jain/talks/adn_arc.htm ©2014 Raj Jain
Novelty/Originality

- Extends 8 of the latest networking developments:
 1. Software defined networking:
 1. Data and control plane separation
 2. Centralization of control plane
 2. OpenFlow: Protocol between controller and forwarding elements
 3. Cross-Layer Communication
 4. OpenADN tags: Layer 7 Proxies without layer 7 visibility
 5. MPLS like Labels
 6. ID/Locator Split
 7. Late Multi-stage binding
 8. Rule-Based Delegation
Software Defined Networking

- Policies can be changed on the fly
 ⇒ Software Defined
Rule-Based Delegation

ISP's Controller

ASP 1’s Controller

Policies

ASP 1’s Controller

Policies

ASP 2’s Controller

Control

ISP

Middle-boxes

OpenADN Aware

Legacy

(OpenADN Unaware)
Results: Key Features of OpenADN

1. Edge devices only. Core network can be current TCP/IP based, OpenFlow or future SDN based
2. Coexistence (Backward compatibility): Old on New. New on Old
3. Incremental Deployment
4. Economic Incentive for first adopters
5. Resource owners (ISPs) keep complete control over their resources

Most versions of Ethernet followed these principles. Many versions of IP did not.
Beneficiaries of This Technology

- **ASPs**: Companies like Qatar National Bank. Deploy servers anywhere and move them anytime.
- **ISPs**: Ooredoo. Offer new services.
- **Cloud Service Providers (CSPs)**: Freedom to move VMs, Less impact of downtime.
Qatar’s Research Grand Challenges

- Qatar National Vision 2030:
 - Address 3 of the 4 pillars: **Human Development,**
 - **Social Development,** **Economic Development**
 - Mobile and Cloud Technologies are key to the future of all large multi-national corporations

- Qatar’s Cross-Cutting Research Grand Challenges:
 - Directly addresses 3 of the 12 grand challenges
 - **5. Sustainable Urbanization – Doha as a smart city:** Distributed Cloud Computing ⇒ Smart Computing and Communication
 - **9. Managing the Transition to a Diversified, Knowledge-Based Society:** Several QU students are getting started on their MS projects
 - **12. Assure Cyber Security:** Networking, Mobile Technologies, Cloud Computing technologies are being developed
Importance of leading in Future Internet?

Billion dollar question!
Life Cycles of Technologies

- Potential
- Time
- Research
- Hype
- Disillusionment
- Success or Failure
- Mobile
- Multi-Cloud
- Cloud
- SDN
- MPLS
- ATM
Industry Growth: Formula for Success

- Paradigm Shifts ⇒ Leadership Shift
- Old market leaders stick to old paradigm and loose
- Mini Computers → PC, Phone → Smart Phone, PC → Smart Phone

Number of Companies

New Entrants	Consolidation	Stable Growth	Time

Innovators ⇒ Startups ⇒ Technology Differentiation

Big Companies Manufacturing ⇒ Price differentiation

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/talks/adn_arc.htm

©2014 Raj Jain
Summary

1. Most large enterprises use multiple globally distributed clouds. OpenADN can provide these enterprises networking services they need to manage multiple clouds.

2. Address 3 of 12 Qatar’s Research Grand Challenges and 3 of the 4 pillars of Qatar National Vision 2030.

4. Methods and Results: Designing the architecture and implementing a demo testbed.

5. Significance and Impact: Will help Qatar businesses come to the forefront of IT revolution.