Network Virtualization and Application Delivery Using Software Defined Networking

RAJ JAIN
Washington University in Saint Louis
Saint Louis, MO 63130
Jain@cse.wustl.edu
Invited Talk at ADCOM 2012
December 14, 2012, Bangalore, India

These slides and audio/video recordings are available at:
http://www.cse.wustl.edu/~jain/talks/adn_adc.htm
Overview

1. Virtualization: Why, How?
2. Recent Networking Virtualization Technologies
3. Our Research: Open Application Delivery
4. Software Defined Networking
Why Virtualize?

1. Sharing: Break up a large resource
 Large Capacity or high-speed
2. Isolation: Protection from other
 tenants
3. Aggregating: Combine many
 resources in to one
4. Dynamics: Fast allocation,
 Change/Mobility, load balancing
5. Ease of Management
 ⇒ Cost Savings
6. Mobility for fault tolerance
Virtualization in Computing

- **Storage:**
 - Virtual Memory ⇒ L1, L2, L3, ... ⇒ Recursive
 - Virtual CDs, Virtual Disks (RAID), Cloud storage

- **Computing:**
 - Virtual Desktop ⇒ Virtual Server ⇒ Virtual Datacenter
 - Thin Client ⇒ VMs ⇒ Cloud

- **Networking:** Plumbing
 - Virtual Channels, Virtual LANs, Virtual Private Networks
 - Each of these can be/need to be virtualized
 - Quick review of recent technologies for network virtualization
vNICs

- Each VM needs its own network interface card (NIC)

- Hypervisor

- vNICs

- pNICs

- pSwitch

- pM

- vM1

- vM2

- vNIC1

- vNIC2

-Hypervisor

-pM

-pNIC

-pSwitch

-p = Physical

-v = Virtual

-M = Machine

http://www.cse.wustl.edu/~jain/talks/adn_adc.htm
1. VM vendors: S/W NICs in Hypervisor w Virtual Ethernet Bridge (VEB) (overhead, not ext manageable, not all features)

2. NIC Vendors: NIC provides virtual ports using Single-Route I/O virtualization (SR-IOV) on PCI bus

3. Switch Vendors: Switch provides virtual channels for inter-VM Communications using virtual Ethernet port aggregator (VEPA): 802.1Qbg (s/w upgrade), 802.1Qbh (new switches)
Bridge Port Extension

- Multiple physical bridges to make a single virtual bridge with a large number of ports
 ⇒ Easy to manage and configure

- IEEE 802.1BR
Multi-Tenants

- Each tenant needs its own networking domain with its VLAN IDs

1. Virtual Extensible Local Area Networks (VXLAN)
2. Network Virtualization using Generic Routing Encapsulation (NVGRE)
3. Stateless Transport Tunneling Protocol (STT)

⇒ Network Virtualization over L3 (NVO3) group in IETF
Multi-Site

- Better to keep VM mobility in a LAN (IP address changes if subnet changes)
- Solution: IP encapsulation
- Transparent Interconnection of Lots of Links (TRILL)

http://www.cse.wustl.edu/~jain/talks/adn_adc.htm

©2012 Raj Jain
Clouds and Mobile Apps

- *Web Services To Drive Future Growth For Amazon* ($2B in 2012, $7B in 2019)
 - Forbes, Aug 12, 2012

- June 29, 2007: Apple announced iPhone ⇒ Birth of Mobile Internet, Mobile Apps
 - Almost all services are now mobile apps: Google, Facebook, Bank of America, …
 - Almost all services need to be global (World is flat)
 - Almost all services use cloud computing

Networks need to support efficient service setup and delivery
Service Center Evolution

1. Single Server

2. Data Center
 - Load Balancers
 - SSL Off loaders

3. Global Clouds

Global Internet

Need to make the global Internet look like a data center
Google WAN

- Google appliances in Tier 3 ISPs
- Details of Google WAN are not public
- ISPs can not use it: L7 proxies require app msg reassembly

Washington University in St. Louis http://www.cse.wustl.edu/~jain/talks/adn_adc.htm ©2012 Raj Jain
Our Solution: OpenADN

- Open Application Delivery Networking Platform
 Platform = OpenADN aware clients, servers, switches, and middle-boxes

- Allows Application Service Providers (ASPs) to quickly setup services on Internet using cloud computing ⇒ Global datacenter

Diagram:
- Servers A1, B1
- Servers A2
- OpenADN middle-box
- OpenADN switches
- Routers
- Access ISP
- Clients
- Internet
Step 1: Centralization of Control Plane

- Control = Prepare forwarding table
- Data Plane: Forward using the table
- Forwarding table is prepared by a central controller
- Protocol between the controller and the forwarding element: OpenFlow
- Centralized control of policies
- Switches are simple. Controller can be complex. Can use powerful CPUs
- Lots of cheap switches = Good for large datacenters

Washington University in St. Louis http://www.cse.wustl.edu/~jain/talks/adn_adc.htm ©2012 Raj Jain
Centralized vs. Distributed

- Fully centralized is not scalable.
- Fully distributed is not manageable.
 ⇒ Hierarchy
Step 2: Standardized Abstractions

- The routers are expensive because there is no standard implementation.
- Every vendor has its own hardware, operating/management system, and proprietary protocol implementations.
- Similar to Mainframe era computers. No cross platform operating systems (e.g., Windows) or cross platform applications (Java programs).

<table>
<thead>
<tr>
<th>OSPF</th>
<th>BGP</th>
<th>DHCP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Network Operating System</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Proprietary fast forwarding hardware</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Cisco IOS
Juniper JUNOS
Example: PC Paradigm Shift

- Computing became cheaper because of clear division of hardware, operating system, and application boundaries with well defined APIs between them.
- Virtualization ⇒ simple management + multi-tenant isolation

<table>
<thead>
<tr>
<th>Scientific</th>
<th>Business</th>
<th>Batch</th>
</tr>
</thead>
<tbody>
<tr>
<td>OS360 Operating System</td>
<td>IBM 360 HW, Storage, …</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MSOffice</th>
<th>OpenOffice</th>
</tr>
</thead>
<tbody>
<tr>
<td>DOS</td>
<td>Windows</td>
</tr>
<tr>
<td>Intel</td>
<td>AMD</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>VM1</th>
<th>VM2</th>
<th>VM3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hypervisor</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Physical HW</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1981 ➞ 1998
Software Defined Networking

- Layered abstractions with standardized APIs

Enterprise 1
- Multicasting
- Network OS1

Enterprise 2
- Mobility
- Network OS2

Enterprise 3
- App1
- App2
- Network OS3

Applications

Network Virtualization

ForwardingHW

ForwardingHW

ForwardingHW

ForwardingHW

http://www.cse.wustl.edu/~jain/talks/adn_adc.htm
Washington University in St. Louis
©2012 Raj Jain
SDN’s Layered Abstraction

- SDN provides standardized mechanisms for distribution of control information.

Diagram:
- Northbound:
 - ASP1: OpenADN
 - Net App1
 - Network OS1
 - Network Virtualization
- Southbound:
 - OpenFlow
 - Forwarding HW

Application Level Control (ASP)
Network Level Control (ISP)
Virtualization
Forwarding Hardware
SDN Architecture Component Examples

Monitoring/Debugging
Control Applications

Network OS/Controller
Virtualization/Slicing

Forwarding

Monitoring/Debugging
Control Applications

Network OS/Controller
Virtualization/Slicing

Forwarding

Ref: https://courses.soe.ucsc.edu/courses/cmpe259/Fall11/01/pages/lectures/srini-sdn.pdf
http://www.cse.wustl.edu/~jain/talks/adn_adc.htm
©2012 Raj Jain
SDN Impact

- Why so much industry interest?
 - Commodity hardware
 - Lots of cheap forwarding engines ⇒ Low cost
 - Programmability ⇒ Customization
 - Those who buy routers, e.g., Google, Amazon, Docomo, DT will benefit significantly

- Tsunami of software defined devices:
 - Software defined wireless base stations
 - Software defined optical switches
 - Software defined routers
Life Cycles of Technologies

Potential

Time

Research Hype Dis illusionment Success or Failure

SDN MPLS ATM

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/talks/adn_adc.htm

©2012 Raj Jain
Industry Growth: Formula for Success

- Paradigm Shifts ⇒ Leadership Shift
- Old market leaders stick to old paradigm and loose
- Mini Computers → PC, Phone → Smart Phone, PC → Smart Phone

Innovators ⇒ Startups ⇒ Technology Differentiation

Big Companies Manufacturing ⇒ Price differentiation

Number of Companies

Time

New Entrants

Consolidation

Stable Growth
OpenADN in SDN’s Layered Abstraction

- SDN provides standardized mechanisms for distribution of control information

![Diagram showing OpenADN in SDN's Layered Abstraction]

ASP1: OpenADN
ASP2: OpenADN
ASP3: OpenADN
Application Level Control (ASP)

App1
App2
App3
App4
Network Level Control (ISP)

Network OS1
Network OS2
Network OS3
Network OS

Network Virtualization
Virtualization

OpenADN Aware
OpenFlow
Forwarding HW
Forwarding HW
Forwarding HW

Forwarding HW
Forwarding HW
Key Features of OpenADN

1. Edge devices only. Core network can be current TCP/IP based, OpenFlow or future SDN based
2. Coexistence (Backward compatibility): Old on New. New on Old
3. Incremental Deployment
4. Economic Incentive for first adopters
5. Resource owners (ISPs) keep complete control over their resources

Most versions of Ethernet followed these principles. Many versions of IP did not.
Summary

1. Cloud computing ⇒ Virtualization of computing, storage, and networking
 ⇒ Numerous recent standards related to networking virtualization both in IEEE and IETF

2. Recent Networking Architecture Trends:
 1. Centralization of Control plane
 2. Standardization of networking abstractions
 ⇒ Software Defined Networking (SDN)
 3. Most networking devices will be software defined

3. OpenADN enables delivery of applications using North-bound SDN API
Thank You!

धन्यवाद

Kurukkal Naan

Thank You!
OpenADN vs. Serval

1. Message-Level Granularity

MB1 -> MB2 -> Server 1
MB3

Server 2

Client

MB = Middle Box

2. Sequence of Middle and End entities

Client -> MB1 -> MB2 -> MB3 -> Server1 -> Server2

3. Packet & Message-Level MBs

Server 1

Client1

Client2

TCP Splicing

MB

Msgs

Server 2

Client

4. Receiver & Sender Policies

Client MB

Server MB

Client MB

Server MB

http://www.cse.wustl.edu/~jain/talks/adn_adc.htm

©2012 Raj Jain
Extension 5: Cross-Layer Communication

- Application puts a “label” in “Application Label Switching (APLS) layer “3.5” (between IP and TCP header)
- Like MPLS which is layer “2.5”

<table>
<thead>
<tr>
<th>L2 Header</th>
<th>[L2.5 Header]</th>
<th>L3 Header</th>
<th>APLS Header</th>
<th>L4 Header</th>
<th>L5 Hdr+Data</th>
</tr>
</thead>
</table>

- Legacy routers forward based on L3 or L2.5 header
- Only Applications (user and server) and openADN appliances and middle boxes read/write APLS labels
- L3 protocol type field indicates the presence of APLS header
- APLS header protocol type field indicates L4 protocol: could be TCP, UDP, SCTP, … ⇒ Works with all L4 Protocols,
 - Works with IP, MPLS, …
Cross-Layer Communication (Cont)

- APLS header allows:
 - Session Affinity: All packets go to the same server
 - Sender policy: send this through video translator
 - Receiver Policy: Load balancing
 - Network Policy: QoS
 - Forwarding through appropriate set of middle boxes
OpenFlow (Cont)

- Three Components:
 - Flow table: How to identify and process a flow
 - Secure Channel: Between controller and the switch
 - Open Flow Protocol: Standard way for a controller to communicate with a switch

<table>
<thead>
<tr>
<th>Rule</th>
<th>Action</th>
<th>Stats</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1. Forward to Port n</td>
<td>Packet + Byte Counters</td>
</tr>
<tr>
<td></td>
<td>2. Encapsulate and forward to controller</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3. Drop</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4. Send to normal processing pipeline</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5. Modify fields</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>In Port</th>
<th>VLAN ID</th>
<th>Ethernet</th>
<th>IP</th>
<th>TCP</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>SA</td>
<td>DA</td>
<td>Type</td>
</tr>
</tbody>
</table>

& Mask
OpenFlow (Cont)

- Controller forwards the packets correctly as the mobile clients move
- Reference designs for Linux, Access points (OpenWRT), and NetFPGA (hardware)
- Allows both proactive (flow tables loaded before hand) and reactive (Flow entries loaded on demand)
- Allows wild card entries for aggregated flows
- Multiple controllers to avoid single point of failure: Rule Partitioning, Authority Partitioning

Ref: [MCK08], OpenFlow.org, OpenNetworking.org
Why worry about Future Internet?

Billion dollar question!
Step 2: Multi-Tenants Clouds

- Problem: Multiple tenants in the datacenter
- Solution: Use multiple controllers. Each tenant can enforce its policies

- Significant industry interest ⇒ Open Networking Foundation, https://www.opennetworking.org/
Resource Control

- ASPs keep complete control of their data. ISP does not have to look at the application headers or data to enforce application level policies.
- ISPs keep complete control of their equipment. ASPs communicate their policies to ISP’s control plane.
- Middle boxes can be located anywhere on the global Internet (Of course, performance is best when they are close by).
- ISPs own OpenADN switches and offer them as a service.
- ASPs or ISPs can own OpenADN middle boxes.
- No changes to the core Internet.
Beneficiaries of This Technology

- Equipment/Software vendors: OpenADN-aware appliances
- ASPs: Deploy servers anywhere and move them anytime
- ISPs: Offer new application delivery/middlebox services
- Cloud Service Providers (CSPs): Freedom to move VMs, Less impact of downtime
- CDNs, e.g., Akamai, can extend into application delivery
OpenADN Innovations

1. Cross-Layer Communication
2. MPLS like Labels
3. Extended OpenFlow flow-based handling, centralized policy control
4. Software Defined Networking: Standardized abstractions, Multi-Tenants, Control Plane programming for data plane
5. ID/Locator Split
6. Layer 7 Proxies without layer 7 visibility
Networking: Failures vs Successes

- 1986: MAP/TOP (vs Ethernet)
- 1988: OSI (vs TCP/IP)
- 1991: DQDB
- 1994: CMIP (vs SNMP)
- 1995: FDDI (vs Ethernet)
- 1996: 100BASE-VG or AnyLan (vs Ethernet)
- 1997: ATM to Desktop (vs Ethernet)
- 1998: ATM Switches (vs IP routers)
- 1998: MPOA (vs MPLS)
- 1999: Token Rings (vs Ethernet)
- 2003: HomeRF (vs WiFi)
- 2007: Resilient Packet Ring (vs Carrier Ethernet)
- IntServ, DiffServ, …

Technology alone does not mean success.
OpenADN Features

Message level:
- Server selection
- Load balancing between servers
- Fault tolerance
- Server mobility
- User Mobility
- Secure L5-L7 headers and data
- Middlebox services: Intrusion detection, Content based routers, application firewalls, …
 - Control plane and data plane MBs
- Middlebox traversal sequence
- Message level policies
- TCP Splicing