May 20, 1988, Modifications to the IEEE 802.5 Standard to Include Early Token Release, by Jacalyn Winkler, 6 pages.
Dec. 1, 1987 Changes to the IEEE 802.5 Standard to Include Early Token Release, 3 pages.

Primary Examiner—Wellington Chen
Assistant Examiner—Min Jung
Attorney, Agent, or Firm—David A. Dagg; A. Sidney Johnston; Albert Cefalo

ABSTRACT
A system for stripping frames transmitted by a station on a token ring network is disclosed. During operation of the system, the station receives a grant of permission to transmit onto the network. In an example embodiment, the grant of permission is a token. After receipt of the request for permission to transmit, the station transmits onto the network. The station transmits frames onto the network until the count of frames transmitted onto the network is the ‘frame count’. Upon transmission of the frames, the station stops forwarding frames received from the network, thus removing received frames from the network. Removing received frames from the network is referred to as ‘stripping’. Following transmission of the information frames, the station counts the number of frames stripped from the network. The count of frames stripped from the network is the ‘strip count’. When the strip count equals the frame count, the station terminates stripping. In an example embodiment, the system is used in a bridge station, the bridge station connecting a first network with a second network.

31 Claims, 5 Drawing Sheets
IS RECEIVED FRAME ADDRESSED TO ANOTHER (ACCESSIBLE) LAN?

COPY FRAME FOR TRANSMISSION TO A SECOND LAN AND REPEAT FRAME ON FIRST LAN

DOES STATION HOLD THE TOKEN FOR SECOND LAN?

TRANSMIT FRAME ONTO SECOND LAN

INCREMENT FRAME COUNT

HAVE ALL FRAMES BEEN TRANSMITTED?

DOES PROTOCOL PERMIT STATION TO CONTINUE TRANSMITTING FRAMES?

TRANSMIT STATION STRIP DELIMITER FRAME(S)

INCREMENT FRAME COUNT FOR EACH DELIMITER FRAME

HAVE ALL FRAMES BEEN TRANSMITTED?

REPEAT FRAME
IS THE FRAME SOURCE ADDRESS EQUAL TO ONE OF THE STATION'S INTERFACE ADDRESSES?

YES

STRIP FRAME

NO

REPEAT FRAME

IS FRAME ERROR-FREE?

YES

SET FRAME COUNT TO ZERO

NO

DOES FRAME CONTAIN AN ERROR?

YES

SET STATION FRAME COUNT TO ZERO

NO

GO TO STEP 70 FIGURE 3B

FIG. 3C
FRAME REMOVAL MECHANISM USING FRAME COUNT FOR TOKEN RING NETWORKS

This is a division of application Ser. No. 07/678,888 filed Mar. 28, 1991, now abandoned.

BACKGROUND OF THE INVENTION

1. Field of the Invention

The invention relates generally to the field of computer networks comprising a plurality of stations which communicate data in a ring using a token-based protocol and more specifically to a mechanism for removing data from the network.

2. Description of the Prior Art

A computer network enables various devices, such as processors, mass storage devices, and printers, to communicate with each other over high-speed communication data stream. After a transmission, the first frames received by the source station over the ring are the frames it transmitted, assuming proper operation of the stations on the ring.

The stations operate in accordance with communication protocols which facilitate the orderly transfer of the frames over the communication links. One type of communication protocol is a token-ring system. Such systems use a token, that is, a specific string of bits, to indicate that a transmitting station has completed its transmission. A succeeding station may then, following the dictates of the protocol, begin transmitting frames upon receipt of the token.

In a token-ring system a station may not transmit data over the ring unless it holds the token. Thus if a station has frames to transmit around the ring it first removes the token from the ring data stream, that is, it "captures" the token, when it receives it from the preceding
and which is not the original source station, may not
recognize the source address in the frames it has trans-
mitted over the second ring. The bridge is capable of
transmitting frames which were originally transmitted
by one of many source stations on one or more different
LAN's. When the frames return to the bridge over the
second ring, it may not have time to compare the frame
source address with the addresses of the many source
stations on the various LAN's before the decision to
strip the frame must be made. Thus the bridge could
repeat a frame that should be stripped by it. Accord-
ingly, there must be a method for a bridge to determine
which frames to strip.

One possible method for stripping such frames in-
volves the bridge marking the last frame in the sequence
of transmitted frames, e.g., by setting a flag in the frame.
The bridge then, after a transmission, strips the frames it
receives over the ring until it detects the set flag in one
of the frames. If, however, the frame containing the flag
is lost or corrupted, making the set flag undetectable,
the bridge may continue to strip the frames it receives
over the ring until it is signalled to stop, for example, by
the expiration of a locally kept timer. The bridge thus
strips frames originated by other stations on the ex-
tension preventing the frames from reaching their
intended destinations. If the flag is a single-bit flag, an
error in the flag may result in the flag appearing
re-set, and thus, the bridge will stop stripping before it
has removed all of its frames.

A non-bridge station which connects many devices to
the LAN may also have problems determining which
frames it should strip. A station must determine whether
to strip a frame within the time it takes the frame ad-
dresses to pass through the station. Thus the station may
not have time to match the frame source address with
one of its many associated addresses, and another
method for determining which frames to strip must be
used.

SUMMARY OF THE INVENTION
The invention provides a new and improved station
and a method for enabling the station to strip the frames
it transmits.

In brief summary, a station incorporating the inven-
tion transmits a sequence of one or more frames on a
ring, without setting any flags in the frames, and keeps
a count of the frames transmitted. At the end of the
transmitted sequence it also originates on to the ring one
or more coded marker frames. After the transmission is
begun, the station strips from the ring the frames it
receives, decrementing its count for each properly
stripped frame, until either its count is reduced to zero
or one of its marker frames is detected.

BRIEF DESCRIPTION OF THE DRAWINGS
This invention is pointed out with particularity in the
appended claims. The above and further advantages
of this invention may be better understood by referring to
the following description taken in conjunction with the
accompanying drawings, in which:

FIG. 1 depicts a functional block diagram of an ex-
tended LAN;
FIG. 2 depicts an illustration of an information frame
used in the extended LAN shown in FIG. 1; and
FIGS. 3A–3C comprise a flow chart depicting the
operation of bridges on the extended LAN shown in
FIG. 1 operating in accordance with the preferred em-
bodyment.

DETAILED DESCRIPTION OF AN
ILLUSTRATIVE EMBODIMENT
With reference to FIG. 1, a ring 10, that is, a LAN
configured in a ring topology, includes a plurality of
stations 11A through 11F connected by communication
links 12A through 12F. The stations 11 interface one or
more devices 14A through 14F to the ring. The devices
14 may be of diverse types, including computers, mass
storage devices, telecommunications links, printers, and
so forth, all of which may transmit information to, or
receive information from, other devices in the ring 10
over communication links 12.

Similarly a ring 20 includes a plurality of stations 21A
through 21E interconnected by communications links
22A through 22E, and bus 30 includes a plurality of
stations 31A through 31C. Each of the stations 21 and
31 connects one or more devices identified generally as
24 or 34 to the ring 20 and bus 30, respectively.

Ring 20 is interconnected with ring 10 by a bridge 15.
It is also interconnected by a bridge 17 to another net-
work (not shown). The bridges are special purpose
stations that are simultaneously stations on each of
the LAN's they interconnect. Bridge 16 interconnects
bus 30 with ring 10, thus stations on ring 20 can also com-
unicate with stations on bus 30 via ring 10 using both
bridges 16 and 15. The interconnected networks to-
gether form an extended LAN 8.

The stations 11 and 21, including the bridge-stations,
transmit information over the respective communications
links 12 and 22 in the form of frames, the structure
of which will be described below in connection with
FIG. 2. Communication between two stations on the
same ring occurs when, for example, one station 11
transmits a frame to another station 11. To accomplish
this, the station 11 originating the frame transmits a
signal comprising a bit stream including the frame to
another station 11 (following the direction of the arrow)
over the communications link 12 interconnecting the
two stations. The station 11 that receives a bit stream
from the originating station 11 repeats the frame over the
communications link 12 interconnecting it and the
next station 11.

This process is repeated by each of the other stations
11 until the frame is returned to the originating station
11. Essentially, each of the stations receives a signal
over a communications link 12 interconnecting it and a
preceding station 11, and transmits a signal over another
communications link 12 interconnecting it and a suc-
ceeding station 11. If a station 11 is an intended recipi-
ent of the frame, in addition to repeating the frame to its
downstream station 11, it also retains a copy of the
frame for processing by one or more of the devices 14
connected to it.

The determination of whether a station 11 or 21 may
transmit a frame to a ring is based on whether the sta-
tion holds a token. A token is a special sequence of bits
which the stations transmit around the ring. For ex-
ample, station 11 is to send a frame, when the token
reaches it, it does not repeat the token, thereby captur-
ing the token and becoming its holder. The station 11
then transmits one or more frames. After completing
the transmission of these frame(s), the station 11 re-
sumes transmission of the token around the ring in ac-
cordance with the ring protocol, effectively releasing it
to other stations on the ring.

When a station 11 receives a frame which it origi-
nated, other than the token, it strips the frame from the
ring 10. Thus a frame is transmitted around the ring, that is, repeated from station to station, only once. If the originating station does not strip one of its frames, the intended destination station may receive duplicates of the frame. The destination station receives these duplicate frames at a faster rate than it ordinarily receives frames. Thus the station must process these frames more quickly, resulting in additional station overhead and possibly station errors.

Communication between two stations on different rings, for example, a station 21 on ring 20 and a station 11 on ring 10, is accomplished using the bridge 15. The bridge 15 acts as the intended receiving station on ring 20 and copies the frame as well as repeating it to the next station 21. The bridge 15 then transmits the copied frame on ring 10, after it captures the ring 10 token, and the intended receiving station 11 may then copy the frame when it receives it over the ring 10. After the frame is transmitted around ring 10 it is received by the bridge 15 and the bridge 15 then strips it. The operation of the bridge 15 is discussed in more detail with reference to FIGS. 3A-3C below.

As noted above, information is transferred in the form of frames, the structure of which is shown in FIG. 2. With reference to FIG. 2, a frame 40 is divided into several fields. The start of a frame is denoted by a preamble field 41A and a start frame delimiter field 41B which further denotes the beginning of the portion of the frame containing the frame information. These fields are generally referred to as a start-of-frame sequence 41.

Immediately following the start-of-frame sequence 41 is a frame control field 42 detailing whether the bit stream is a token or a frame and, if it is a frame, indicating the type of frame, for example, an information frame. The next two fields are address fields 43A-B, namely, a destination address field DA 43A whose contents identify the intended recipient(s) of the frame and a source address field SA 43B whose contents identify the source station. The information field 44 follows the address fields 43, and is in turn followed by a frame check sequence field 45 containing an error detection sequence used by receiving stations to detect errors in any of the frame control field 42, the address fields 43 and the information field 44.

The end of the frame is denoted by an end-of-frame sequence 46. The sequence 46 includes an end delimiter field 46A, which defines the end of a frame, and a frame status field 46B containing a set of status flags. The status flags are conditioned by stations other than the source station and provide status information to the destination stations.

If a ring is improperly operating, for example, if the token is lost or a break develops in the ring, the stations 11 and 21 begin operating in an error detection and recovery mode defined by the network protocol. The error detection and recovery mode may require all stations to actively participate or it may require the participation of only a few of the stations. Two widely used network protocols include error detection and recovery techniques involving the use of special-purpose frames, namely claim token frames and beacon frames.

The claim token frames are used when the ring is initialized or when the ring token is lost and the ring must thus be re-initialized. Basically, each station 11 and 21 has associated with it a priority for error detection and recovery purposes. When the token is lost each station continuously transmits claim token frames containing its priority until it receives another station's claim token frame. The receiving station then compares the priority in the frame with its own priority, and if the station has a lower priority than that contained in the frame it repeats the frame. Otherwise, it strips the frame from the ring and transmits another of its own claim token frames. When a station receives its own claim token frame, which indicates that the station has the highest priority, it originates the network token.

The beacon frames are used when a break in the ring or a substantial ring reconfiguration is suspected. Basically each station continuously transmits its own beacon frames to downstream stations. A downstream station, upon receipt of a beacon frame, stops transmitting its own beacon frames and repeats the received beacon frames to its successor station. When a station receives its own beacon frames, it is assumed that the network is properly configured and ring re-initialization, involving the use of the claim token frames as described above, is begun.

The detailed operation of the bridges 15-17 will now be described in connection with flow charts in FIGS. 3A-3C. The operations may be performed using hardware, software and/or firmware. It will be appreciated by those skilled in the art that non-bridge stations connecting a number of attached devices to the LAN operate in a manner which is similar to that of a bridge. Thus much of the discussion below relating to bridges applies, as well, to any station on the network.
20 token (steps 56–57). If the bridge 15 has not transmitted all of the copied frames before it ends the current transmission, it resumes transmission of copied frames when it again captures the ring 20 token (step 60).

Each time the bridge 15 transmits a frame onto ring 20 it increments an internal frame count by one (step 55), essentially keeping a running count of the number of frames transmitted. The count may be so incremented either at the beginning of the frame, for example, when the start frame delimiter field 41B (FIG. 2) is transmitted, or at the end of the frame, for example, when the end delimiter field 46A is transmitted.

At the close of the bridge's transmission of frames over the ring 10, the bridge 15 transmits onto the ring 20 one or more marker, or strip delimiter, frames marking the end of the transmission, incrementing the frame count by one for each of these frames (step 59). The count need not be incremented for these frames. However, in the preferred embodiment it is so incremented to keep an exact count of the frames transmitted by the bridge 15.

The strip delimiter frames are coded information frames specifying at least the frame type, that is, delimiter frame, the address of the originating bridge station, and the frame status, making each frame a full, or valid, frame. The number of strip delimiter frames transmitted is determined by the bridge 15. Redundant strip delimiter frames may be used to ensure that at least one delimiter frame will be transmitted around the ring 20 and returned to the bridge 15, thus giving the network a certain immunity to error. For further immunity to errors, the strip delimiter frames may be protected by a frame check sequence 4S (FIG. 2). Using the frame check sequence enables the source station to determine if the delimiter frame carries any errors. Errors in the frame may indicate a problem with one or more of the network stations and, as discussed below with reference to FIGS. 3A–3C, indicate to the source station that it is to continue stripping.

It will be appreciated by those skilled in the art that the frame stripping operation by a bridge, or any source station, must be quickly performed. As set forth above, a station typically determines whether or not to strip a frame by looking at the frame source address field 43B. If the field contents match one of the addresses associated with the station, it strips the frame. If the bridge 15 had to compare the contents of the frame source address field 43B with, for example, the addresses of stations originating frames transmitted by the bridge to determine whether to strip the frame, the bridge 15 would require very fast, and therefore expensive, processors and memories. The same is true for any stations which have many associated addresses, for example, stations which attach a relatively large number of devices to the network. The inventive bridges 15–17 and stations 11 and 21 use their internal frame counts and strip delimiter frames to determine which frames to strip, and thus they can use relatively simple circuitry and state machines, to determine when to start stripping frames. I.e., when the frame count is non-zero, and when to stop stripping frames, as discussed below with reference to FIGS. 3A–C.

More specifically, with reference to FIG. 3B, when the bridge 15 receives a bit stream over the ring 10, it first checks its internal frame count to determine if it is equal to zero (steps 70–71). If the count is non-zero, the bridge 15 checks the information it is receiving over the network for the presence of a strip delimiter frame, the token, or a frame indicating a network error condition, that is, a claim token frame or a beacon frame (steps 72–74), any of which may result in the bridge not starting, or discontinuing, its frame stripping operation. If the information is not any of the above, the bridge strips it, without comparing the source address with any address list. The bridge 15 then decrements its internal frame count by one for each error-free frame stripped from the ring 20 (steps 76–77).

The bridge continues to strip all the frames it receives on ring 20, until it encounters a delimiter frame, the token, or a claim token frame or a beacon frame, or its frame count is reduced to zero, for whatever reason, for example, during a frame stripping operation or during station re-initialization. The bridge may be receiving frames on a ring while it is in the act of transmitting frames on that ring. Thus the count must be incremented and decremented such that the count will accurately reflect the number of frames transmitted for which a corresponding frame has not yet been stripped, that is, if five frames have been transmitted and three stripped, the count should be two. In the preferred embodiment the count is incremented and decremented at the end of each of the frames to ensure that the count is accurate. Accordingly, the count is never reduced below zero.

Errors in a frame may indicate a problem with a station 21 or communications link 22. Thus the bridge's internal frame count is not reduced for the stripping of an erroneous frame or frame fragments. To determine if a stripped frame is error-free the bridge 15 first checks that the frame is a full, or valid, frame and not just a frame fragment. The count will not be decremented for a fragment. If the frame is a valid frame, the bridge then uses the frame check sequence 4S and the frame status flags 46B (FIG. 2) to check for errors.

Before the bridge 15 strips a frame from the ring 20, it examines the frame to determine if it is a strip delimiter frame, either its own or one from another station (steps 72 and 78). If the frame is another station's strip delimiter frame, the bridge repeats it without altering the internal frame count (steps 78 and 82). The strip delimiter frame then travels around the ring 20 until it returns to the originating station 21 which strips it.

If the frame is the bridge's own strip delimiter frame, which signifies the end of the transmission, the bridge 15 strips it (steps 78–79). If the strip delimiter frame is error-free the bridge 15 stops stripping the frames it receives over the ring 20, even if the internal frame count indicates that all the transmitted frames have not been stripped, and it resets the internal frame count to zero (steps 80–81). The bridge 15 will thereafter strip only its own strip delimiter frames or frames with its station-address as the source address, repeating all the other frames, until the internal frame count is again non-zero indicating a bridge 15 transmission (steps 82–83).

The internal count is set to zero when the bridge 15 detects its own strip delimiter frame, as set forth above, to prevent the bridge 15 from stripping frames originated by another station 21 on the ring 20. Thus even if several of the bridge's frames are erroneously stripped by another station 21, and its count is non-zero when it receives its delimiter frame, the bridge will correctly stop stripping.

Before stripping, the bridge also checks if the received information is the token. Reception of the token indicates that the frames transmitted by the bridge have
all been stripped, even the bridge's strip delimiter frames. The bridge will thus stop stripping and set its count to zero to prevent it from stripping another station's frames thereafter transmitted over the network.

The bridge 15 also stops stripping frames when the network is operating in error detection and recovery mode, indicated by the receipt of error-free claim token or beacon frame (step 90–96). If the bridge 15 does not stop stripping frames during error detection and recovery operation, downstream stations would not receive the frames required for network re-initialization. Thus, upon receipt of an error-free claim token frame or a beacon frame the bridge goes into error detection and recovery mode operation as defined by the token ring protocol. Upon receipt of erroneous claim token or beacon frames, the bridge 15 repeats the frames if the source address is not one of its own addresses or otherwise strips it, and then continues its frame stripping operation (steps 90–96).

Using the strip delimiter frame and the count to indicate when to start and stop stripping frames enables a network to be served by more than one bridge, thus improving network throughput, flexibility and availability. For example, if one path between a source station and a destination station is broken or congested, another path, connected by one or more bridges may be used. The scheme places no topological restrictions on the networks, and thus, two networks may be interconnected by redundant bridges.

Without using the strip delimiter frame and/or the count, a bridge on the second path strips frames based only on the source address, and if it "recognizes" the source address in the frames as identifying one of the stations from which it normally copies frames, it may strip the frames, preventing them from reaching the intended destination. Thus, a network may not be served by redundant bridges. However, if the bridge is using the strip delimiter frames and frame count, it will not strip the frames, regardless of the source addresses in the frames, unless the addresses match the bridge's own station-address. Thus there is no limit on the number of stations whose frames may be transmitted by a given bridge or on the number of bridges in any network because frame stripping is independent of the frame source address.

Using the strip delimiter frame to indicate the end of a transmission, as opposed to setting a flag or changing the contents of a frame field has several additional advantages. For example, the strip delimiter frames uniquely identify their source station, while the frame indicators do not. Thus a strip delimiter frame which is not lost will eventually return to the originating station, signifying a potential network error condition if none of

Using either the strip delimiter frame or the internal count alone allows stations to correctly strip frames without reference to the frame source address, thus achieving some of the advantages set forth above. However, using both the strip delimiter frame and the frame count gives the frame stripping operation an even further robustness to errors. If all the strip delimiter frames are corrupted or lost, the bridge will strip frames only until its count is reduced to zero. Thus, at most, a relatively small number of frames which the bridge did not transmit will be stripped. If only a flag in one of the transmitted frames is used to indicate the end of a transmission and the frame containing the flag is lost or corrupted, many frames not transmitted by the bridge may be stripped.

Alternatively, the bridge may under-strip if only the flag is used to indicate the end of stripping. An error in one of the data frames may result in the frame’s flag appearing set, the type of error which is not typically protected by the frame check sequence, and the bridge then stops stripping. Errors in the strip delimiter frames will not result in understripping because such erroneous frames do not signal the bridge to stop stripping.

It will be appreciated by those skilled in the art that any station, not just bridge-stations, may use the internal frame count and/or strip delimiter frames to determine when to start and stop stripping frames. Using the frame count and the strip delimiter frames enables a station to use relatively fast and yet simple circuitry to control its frame stripping operation, particularly if the station is associated with a large number of addresses.

The foregoing description has been limited to a specific embodiment of this invention. It will be apparent, however, that variations and modifications may be made to the invention, with the attainment of some or all of the advantages of the invention. Therefore, it is the object of the appended claims to cover all such variations and modifications as come within the true spirit and scope of the invention.

What is claimed as new and desired to be secured by Letters Patent of the United States is:

1. A station on a token ring network, said station comprising:
 A. transmitting means for transmitting one or more information frames on to the network;
 B. frame stripping means for stripping frames from the network;
 C. a counter responsive to said transmitting means for counting the frames transmitted on to the network by the station, and further responsive to said frame stripping means for decrementing said count for each error-free information frame stripped from the network by the station; and
 D. frame stripping control means for controlling the
3. A station on a token ring network, said station comprising:
means for granting permission to said station to transmit at least one frame onto said network;
means for counting each of said at least one frame transmitted onto said network;
means for stripping at least one frame from said network, and for counting each frame stripped;
means for beginning stripping in response to a grant of permission to said station to transmit said at least one frame onto said network, and for ending stripping when a number of frames stripped equals a number of frames transmitted.

4. The apparatus as in claim 3 further comprising: said at least one frame is at least one information frame.

5. The apparatus as in claim 3 wherein said means for stripping at least one frame from said network further comprises:
means for stripping all frames arriving at said station from said network.

6. The apparatus as in claim 3 wherein said means for stripping at least one frame from said network further comprises:
means for stripping all frame fragments arriving at said station from said network.

7. The apparatus as in claim 6 further comprising:
means, within said means for stripping, for counting only error-free frames stripped from said network.

8. The apparatus as in claim 3 wherein said means for granting permission to said station to transmit at least one frame onto said network, further comprises:
means for indicating that a token was received by said station.

9. The apparatus as in claim 3 further comprising:
means for ending stripping upon detection by the station of a token.

10. The apparatus as in claim 3 further comprising:
means for ending stripping upon detection by the station of a network error.

11. The apparatus as in claim 3 further comprising:
means for ending stripping upon detection by said station of a beacon frame.

12. The apparatus as in claim 3 further comprising:
means for ending stripping upon detection by said station of a claim token frame.

13. The apparatus as in claim 3 further comprising:
means for ending stripping upon detection by said station of a beacon frame.

14. The apparatus as in claim 3 further comprising:
means for ending stripping upon detection by said station of a frame indicating a network error condition.

15. The apparatus as in claim 3 further comprising:
means for incrementing a counter for each frame transmitted onto said network;
means for decrementing said counter for each frame stripped;
means for ending stripping when said counter indicates that a number of frames stripped equals a number of frames transmitted.

16. The apparatus as in claim 3 further comprising:
a counter;
means, within said means for counting each of said at least one frame transmitted onto said network, for adding one to said counter for each of said at least one frame transmitted onto said network;

17. The apparatus as in claim 11 or claim 12 or claim 13 or claim 14 or claim 15 or claim 16 further comprising:
means, within said means for stripping, for counting only error-free frames stripped by said apparatus.

18. A method for operating a station on a token ring network, comprising:
granting permission to said station to transmit at least one frame onto said network;
transmitting said at least one frame onto said network;
counting each of said at least one frame transmitted onto said network;
beginning stripping, to strip at least one frame from said network and to count each frame stripped, in response to a grant of permission to said station to transmit said at least one frame onto said network;
and,
ending stripping when a number of frames stripped equals a number of frames transmitted.

19. The method as in claim 18 wherein said at least one frame transmitted onto said network comprises at least one information frame.

20. The method as in claim 18 wherein between said step of beginning stripping and said step of ending stripping all frames and frame fragments arriving at said station from said network are stripped.

21. The method as in claim 18 further comprising:
counting only error-free frames.

22. The method as in claim 18 further comprising:
ending stripping upon receiving a token by said station.

23. The method as in claim 18 further comprising:
ending stripping upon detection by the station of a network error.

24. The method as in claim 18 further comprising:
ending stripping upon detection by the station of a beacon frame.

25. The method as in claim 18 further comprising:
ending stripping upon detection by the station of a claim token frame.

26. The method as in claim 18 further comprising:
ending stripping upon detection by the station of a beacon frame.

27. The method as in claim 18 further comprising:
ending stripping upon detection by the station of a frame indicating a network error condition.

28. A station for connection to a token ring network, comprising:
A. transmitting means for transmitting on the network a number of information frames;
B. stop condition detecting means for indicating the occurrence of any of a number of predetermined conditions for stopping a stripping operation; and
C. frame stripping means for stripping from the network information frames received during a time period which begins when the transmitting means begins transmitting information frames, and which ends when any stop stripping condition is indicated by the stop condition detecting means after the