 Automated Service Delivery and Optimal Placement for Cloud Radio Access Networks

Deval Bhamare*, Aiman Erbad†, Raj Jain‡, Mohammed Samaka§
*Department of Computer Science and Engineering, Qatar University, Doha, Qatar
†Department of Computer Science and Engineering, Washington University in Saint Louis, USA
devalb@qu.edu.qa, aerbad@qu.edu.qa, jain@wustl.edu, samaka.m@qu.edu.qa

PROBLEM

- Inefficient resource allocation in Radio Access Networks (RANs)
- Ad-hoc deployment of resources
- High CAPEX and OPEX to ASPs
- Error-prone manual deployments
- Need for Automation platform with centralized resource pool architecture

SOLUTION

- Cloud-RANs is a solution
- Baseband unit (BBU) functionality of RANs deployed at Clouds
- Multiplexing of resources at Clouds
- Automation platform for resource allocation
- MCAD (Multi-cloud Application Delivery Platform): extension of OpenADN

CRAN ARCHITECTURE

RRH = Remote Radio Head
BBU = Base Band Unit
BBU Pool over Cloud 1
BBU Pool over Cloud 2
Mobile Backhaul Network

OPENADN ARCHITECTURE

OPENSTACK INTEGRATION

OpenADN-OpenStack Integration API

QU SETUP

MCAD ARCHITECTURE

RESOURCE ALLOCATION - COMPARISON

- Branch and Bound - Sorted Ascending
- Branch and Bound - Sorted Descending
- Simulated Annealing - Shorter
- Simulated Annealing - Longer
- Branch and Bound - Normal

SA-shorter performs the worst with maximum total delays
BnB-3D performs the best with minimum total delays