Introduction to Wireless Coding and Modulation

Raj Jain

Professor of Computer Science and Engineering Washington University in Saint Louis Saint Louis, MO 63130

Jain@cse.wustl.edu

Audio/Video recordings of this class lecture are available at:

http://www.cse.wustl.edu/~jain/cse574-18/

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse574-18/

- 1. Frequency, Wavelength, and Phase
- 2. Electromagnetic Spectrum
- 3. Coding and modulation
- 4. Shannon's Theorem
- 5. Hamming Distance
- 6. Multiple Access Methods: CDMA
- 7. Doppler Shift

Note: This is the 1st in a series of 2 lectures on wireless physical layer. Signal Propagation, OFDM, and MIMO are covered in the next lecture.

Frequency, Period, and Phase

□ A Sin(2πft + θ), A = Amplitude, f=Frequency, θ = Phase, Period T = 1/f, Example 1 is many in Cycles/see or Heatz

Frequency is measured in Cycles/sec or Hertz

Phase

 \square Sine wave with a phase of 45°

$$\sin(2\pi ft + \frac{\pi}{4}) = \sin(2\pi ft)\cos(\frac{\pi}{4}) + \cos(2\pi ft)\sin(\frac{\pi}{4})$$
$$= \frac{1}{\sqrt{2}}\sin(2\pi ft) + \frac{1}{\sqrt{2}}\cos(2\pi ft)$$

In-phase component I + Quadrature component Q

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse574-18/

Wavelength

- □ Distance occupied by one cycle
- □ Distance between two points of corresponding phase in two consecutive cycles
- □ Wavelength = λ
- □ Assuming signal velocity *v*

$$> \lambda = vT$$

$$\rightarrow \lambda f = v$$

> $c = 3 \times 10^8$ m/s (speed of light in free space) = 300 m/ μ s

Example

□ Frequency = 2.5 GHz

Wavelength =
$$\lambda$$
 = $\frac{c}{f}$
= $\frac{300 \text{ m/}\mu\text{s}}{2.5 \times 10^9}$
= $120 \times 10^{-3} = 120 \text{ mm} = 12 \text{ cm}$

Time and Frequency Domains Amplitude Frequency Amplitude A/3*3f* 1.27 Frequency (b) (143) sin (2x(32)c) Amplitude A/33*f* Frequency (e) (4%) (sim (2a/6) +) (4% sim (2a/64/6)

3-7

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse574-18/

Electromagnetic Spectrum

■ Wireless communication uses 100 kHz to 60 GHz

Decibels

- □ Attenuation = Log_{10} Pin Pout
- □ Attenuation = 10 Log_{10} $\frac{\text{Pin}}{\text{Pout}}$ decibel
- □ Attenuation = 20 Log_{10} $\frac{\text{Vin}}{\text{Vout}}$ decibel
- **Example 1**: Pin = 10 mW, Pout=5 mW Attenuation = $10 \log_{10} (10/5) = 10 \log_{10} 2 = 3 \text{ dB}$
- **Example 2**: Pin = 100mW, Pout=1 mW Attenuation = $10 \log_{10} (100/1) = 10 \log_{10} 100 = 20$ dB

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse574-18/

Coding Terminology

- □ **Signal element**: Pulse (of constant amplitude, frequency, phase) = **Symbol**
- **Modulation Rate**: 1/Duration of the smallest element =Baud rate
- Data Rate: Bits per second

Modulation

- □ Digital version of modulation is called **keying**
- □ Amplitude Shift Keying (ASK):

□ Frequency Shift Keying (FSK):

□ Phase Shift Keying (PSK): Binary PSK (BPSK)

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse574-18/

Modulation (Cont)

□ **Differential BPSK:** Does not require original carrier

□ Quadrature Phase Shift Keying (QPSK):

□ In-phase (I) and Quadrature (Q) or 90 ° components are added

Ref: Electronic Design, "Understanding Modern Digital Modulation Techniques,"

https://www.electronicdesign.com/communications/understanding-modern-digital-modulation-techniques

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse574-18/

QAM

- Quadrature Amplitude and Phase Modulation
- 4-QAM, 16-QAM, 64-QAM, 256-QAM
- Used in DSL and wireless networks

□ 4-QAM \Rightarrow 2 bits/symbol, 16-QAM \Rightarrow 4 bits/symbol, ...

Channel Capacity

- □ Capacity = Maximum data rate for a channel
- Nyquist Theorem: Bandwidth = B
 - Data rate $\leq 2 B$
- \square Bi-level Encoding: Data rate = $2 \times Bandwidth$

■ Multilevel: Data rate = $2 \times \text{Bandwidth} \times \log_2 M$ M = Number of levels

Example: M=4, Capacity = $4 \times Bandwidth$

http://www.cse.wustl.edu/~jain/cse574-18/

Shannon's Theorem

- □ Bandwidth = B HzSignal-to-noise ratio = S/N
- □ Maximum number of bits/sec = $B log_2 (1+S/N)$
- □ Example: Phone wire bandwidth = 3100 Hz

$$S/N = 30 \text{ dB}$$
 $10 \text{ Log }_{10} \text{ S/N} = 30$
 $\text{Log }_{10} \text{ S/N} = 3$
 $S/N = 10^3 = 1000$
 $\text{Capacity} = 3100 \log_2 (1+1000)$
 $= 30,894 \text{ bps}$

Hamming Distance

- □ Hamming Distance between two sequences
 - = Number of bits in which they disagree
- □ Example: 011011

110001

Difference $101010 \Rightarrow \text{Distance} = 3$

Error Correction Example

□ 2-bit words transmitted as 5-bit/word

<u>Data</u>	<u>Codeword</u>
00	00000
01	00111
10	11001
11	11110

Received = $00100 \Rightarrow$ Not one of the code words \Rightarrow Error

Distance (00100,00000) = 1 Distance (00100,00111) = 2

Distance (00100,11001) = 4 Distance (00100,11110) = 3

- \Rightarrow Most likely 00000 was sent. Corrected data = 00
- b. Received = 01010 Distance(...,00000) = 2 = Distance(...,11110) Error detected but cannot be corrected
- c. Three bit errors will not be detected. Sent 00000, Received 00111

Multiple Access Methods

Time Division Multiple Access

Code Division Multiple Access

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse574-18/

Frequency Hopping Spread Spectrum

- Pseudo-random frequency hopping
- Spreads the power over a wide spectrum
 - ⇒ □ Spread Spectrum
- Developed initially for military
- Patented by actress Hedy Lamarr
- Narrowband interference can't jam

Spectrum

Noise Signal

(a) Normal

(b) Frequency Hopping

Direct-Sequence Spread Spectrum

- □ Spreading factor = Code bits/data bit, 10-100 commercial (Min 10 by FCC), 10,000 for military
- □ Signal bandwidth >10 × data bandwidth
- Code sequence synchronization
- \square Correlation between codes \Rightarrow Interference \square \square Orthogonal

DS Spectrum

Time Domain Frequency Domain

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse574-18/

Doppler Shift

- ☐ If the transmitter or receiver or both are mobile the frequency of received signal changes
- \square Moving towards each other \Rightarrow Frequency increases
- \square Moving away from each other \Rightarrow Frequency decreases

Frequency difference = velocity/Wavelength = vf/c

Example: $2.4 \text{ GHz} \Rightarrow 1 = 3x10^8/2.4x10^9 = .125\text{m}$ 120km/hr = 120x1000/3600 = 33.3 m/s

Freq diff = 33.3/.125 = 267 Hz

Doppler Spread and Coherence Time

- ☐ Two rays will be received
- □ **Doppler Spread** = $2vf/c = 2 \times Doppler shift$
- □ They will add or cancel-out each other as the receiver moves
- □ Coherence time: Time during which the channel response is constant = 1/Doppler spread

Duplexing

- Duplex = Bi-Directional Communication
- □ Frequency division duplexing (FDD) (Full-Duplex)

☐ Time division duplex (TDD): Half-duplex

Base — Subscriber

- Many LTE deployments will use TDD.
 - > Allows more flexible sharing of DL/UL data rate
 - > Does not require paired spectrum
 - \gt Easy channel estimation \Rightarrow Simpler transceiver design
 - > Con: All neighboring BS should time synchronize

- 1. Electric, Radio, Light, X-Rays, are all electromagnetic waves
- 2. Wireless radio waves travel at the speed of light 300 m/ μ s Wavelength $\lambda = c/f$
- 3. 16-QAM uses 16 combinations of amplitude and phase using 4 bits per symbol.
- 4. Hertz and Bit rate are related by Nyquist and Shannon's Theorems
- 5. Frequency hopping and Direct Sequence are two methods of code division multiple access (CDMA).

Homework 3

- A. What is wavelength of a signal at 60 GHz?
- B. How many Watts of power is 30dBm?
- C. A telephone line is known to have a loss of 20 dB. The input signal power is measured at 1 Watt, and the output signal noise level is measured at 1 mW. Using this information, calculate the output signal to noise ratio in dB.
- D. What is the maximum data rate that can be supported on a 10 MHz noise-less channel if the channel uses eight-level digital signals?
- E. What signal to noise ratio (in dB) is required to achieve 10 Mbps through a 5 MHz channel?
- F. Compute the average Doppler frequency shift at 36 km/hr using 3 GHz band? Doppler spread is twice the Doppler shift.

What is the channel coherence time?

Washington University in St. Louis http://www.cse.wustl.edu/~jain/cse574-18

Reading List

■ Electronic Design, "Understanding Modern Digital Modulation Techniques,"

https://www.electronicdesign.com/communications/understanding-modern-digital-modulation-techniques

- □ Jim Geier, "Designing and Deploying 802.11 Wireless Networks: A Practical Guide to Implementing 802.11n and 802.11ac Wireless Networks, Second Edition," Cisco Press, May 2015, 600 pp., ISBN:1-58714-430-1 (Safari Book), Chapter 2.
- □ Jim Geier, "Wireless Networks first-step," Cisco Press, August 2004, 264 pp., ISBN:1-58720-111-9 (Safari Book), Chapter 3.
- Steve Rackley, "Wireless Networking Technology," Newnes, March 2007, 416 pp., ISBN:0-7506-6788-5 (Safari Book), Chapter 4.

Wikipedia Links

- □ https://en.wikipedia.org/wiki/Frequency
- □ https://en.wikipedia.org/wiki/Wavelength
- □ https://en.wikipedia.org/wiki/Phase_(waves)
- □ https://en.wikipedia.org/wiki/Quadrature_phase
- □ https://en.wikipedia.org/wiki/Frequency_domain
- □ https://en.wikipedia.org/wiki/Time_domain
- □ https://en.wikipedia.org/wiki/Fourier transform
- □ https://en.wikipedia.org/wiki/Electromagnetic spectrum
- □ https://en.wikipedia.org/wiki/Decibel
- □ https://en.wikipedia.org/wiki/DBm
- □ https://en.wikipedia.org/wiki/Modulation
- □ https://en.wikipedia.org/wiki/Amplitude-shift_keying
- □ https://en.wikipedia.org/wiki/Phase-shift_keying
- □ https://en.wikipedia.org/wiki/Frequency-shift_keying
- □ https://en.wikipedia.org/wiki/Quadrature_phase-shift_keying

Wikipedia Links (Cont)

- □ https://en.wikipedia.org/wiki/Differential coding
- □ https://en.wikipedia.org/wiki/Quadrature amplitude modulation
- □ https://en.wikipedia.org/wiki/Shannon%E2%80%93Hartley_theorem
- □ https://en.wikipedia.org/wiki/Channel_capacity
- □ https://en.wikipedia.org/wiki/Hamming_distance
- □ https://en.wikipedia.org/wiki/Channel access method
- □ https://en.wikipedia.org/wiki/Time_division_multiple_access
- □ https://en.wikipedia.org/wiki/Frequency-division multiple access
- □ https://en.wikipedia.org/wiki/CDMA
- □ https://en.wikipedia.org/wiki/Spread_spectrum
- □ https://en.wikipedia.org/wiki/Direct-sequence_spread_spectrum
- □ https://en.wikipedia.org/wiki/Frequency-hopping_spread_spectrum
- □ https://en.wikipedia.org/wiki/Doppler-effect
- □ https://en.wikipedia.org/wiki/Duplex_(telecommunications)
- □ https://en.wikipedia.org/wiki/Time-division_duplex
- □ http://en.wikipedia.org/wiki/Frequency division duplex

Optional Listening Material

- Those not familiar with modulation, coding, CRC, etc may want to listen to the following lectures from CSE473S:
- □ Transmission Media, http://www.cse.wustl.edu/~jain/cse473-11/i_1cni.htm
- □ Signal Encoding Techniques, http://www.cse.wustl.edu/~jain/cse473-05/i_5cod.htm
- □ Digital Communications Techniques, http://www.cse.wustl.edu/~jain/cse473-05/i 6com.htm

Acronyms

ASK Amplitude Shift Keying

Binary Phase Shift Keying BPSK

Base Station BS

Code division multiple access CDMA

Cyclic Redundancy Check CRC

dB Decibel

dBm Decibel milliWatt

Downlink DL

DS Direct Sequence

Digital Subscriber Line DSL

FCC Federal Communications Commission

FDD Frequency Division Duplexing

FSK Frequency Shift Keying

GHz Giga Hertz

Local Area Network LAN

MHzMega Hertz

3-32

Acronyms (Cont)

□ mW milli Watt

OFDM Orthogonal Frequency Division Multiplexing

PSK Phase Shift Keying

QAM Quadrature Amplitude Modulation

QPSK Quadrature Phase Shift Keying

SS Subscriber Station

TDD Time Division Duplexing

□ UL Uplink

Scan This to Download These Slides

Raj Jain http://rajjain.com

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse574-18/

Related Modules

CSE567M: Computer Systems Analysis (Spring 2013),

https://www.youtube.com/playlist?list=PLjGG94etKypJEKjNAa1n_1X0bWWNyZcof

CSE473S: Introduction to Computer Networks (Fall 2011),

https://www.youtube.com/playlist?list=PLjGG94etKypJWOSPMh8Azcgy5e_10TiDw

Recent Advances in Networking (Spring 2013),

https://www.youtube.com/playlist?list=PLjGG94etKypLHyBN8mOgwJLHD2FFIMGq5

CSE571S: Network Security (Fall 2011),

https://www.youtube.com/playlist?list=PLjGG94etKypKvzfVtutHcPFJXumyyg93u

Video Podcasts of Prof. Raj Jain's Lectures,

https://www.youtube.com/channel/UCN4-5wzNP9-ruOzQMs-8NUw

http://www.cse.wustl.edu/~jain/cse574-18/