Introduction to Cellular Networks: 1G/2G/3G

Raj Jain
Washington University in Saint Louis
Saint Louis, MO 63130
Jain@cse.wustl.edu

Audio/Video recordings of this class lecture are available at:
http://www.cse.wustl.edu/~jain/cse574-16/
1. Cellular Telephony
2. Cellular Frequency Reuse
3. 2G: GSM
4. 2.5G: GPRS, EDGE
5. 3G: W-CDMA
6. 3.5G: High-Speed Packet Access (HSPA)

Note: 3.9G/4G technologies LTE and LTE Advanced discussed in future lectures of this class.
Cellular Network Beginnings

- AT&T Bell Labs designed a cellular structure to reuse frequency. No two adjacent cells use the same frequency.
- 1977: FCC authorized two commercial deployments
 - Chicago: Illinois Bell
 - Washington, DC: American Radio telephone Service
 - Both services started 1983

Washington University in St. Louis http://www.cse.wustl.edu/~jain/cse574-16/ ©2016 Raj Jain
Initial Cellular System in US

- US was divided into
 - 306 metropolitan service areas (MSAs)
 - 75% of US population, 20% of area
 - Densely populated ⇒ Small cell size
 - 428 rural service areas (RSAs)
 - Less populated ⇒ Larger cell size
- Each area was originally allowed two competing carriers: A, B
 - Bell (B)
 - Alternative (A)
- 832 channel-pairs in each area. 416 pairs per carrier.
 - 45 MHz between transmit and receive frequencies
 - 30 kHz per channel
 - 1:7 Frequency reuse with hexagonal cells
- Too many applicants ⇒ FCC started a lottery system
- At least one system in every market by 1990
Cell Sites

- On towers, roof tops, water tanks, utility poles, ...
 - Good source of income for utility companies, cities, schools, churches, hotels, ...
 - With a base station for electronics
 - NIMBY (Not in my back yard)
 ⇒ Mostly hidden, shared towers
Cells on Wheels (CoWs)

- Used for temporary surge in traffic, e.g., games, fares, ...
Macro, Micro, Pico, Femto Cells

- **Macro**: Sections of a city, more than 1 km radius
- **Micro**: Neighborhoods, less than 1 km
- **Pico**: Busy public areas: Malls, airports, …, 200 m
- **Femto**: Inside a home, 10 m

Ref: http://www.microwavejournal.com/articles/print/22784-high-efficiency-amplifier-for-picocells
Cellular Frequency Reuse

Cluster Size = 4
(a) Frequency reuse pattern for $N = 4$

Cluster Size = 7
(b) Frequency reuse pattern for $N = 7$

Cluster Size = 19
(c) Black cells indicate a frequency reuse for $N = 19$
Characterizing Frequency Reuse

- **D** = minimum distance between centers of cells that use the same band of frequencies (called co-channels)
- **R** = radius of a cell
- **d** = distance between centers of adjacent cells (\(d = R\sqrt{3}\))
- **N** = number of cells in repetitious pattern (Cluster)
 - Reuse factor
 - Each cell in pattern uses unique band of frequencies
- Hexagonal cell pattern, following values of **N** possible
 - \(N = I^2 + J^2 + (I \times J), \quad I, J = 0, 1, 2, 3, \ldots\)
- Possible values of **N** are 1, 3, 4, 7, 9, 12, 13, 16, 19, 21, …
- Reuse Ratio = Distance/Radius = \(D/R = \sqrt{3N}\)
- \(D/d = \sqrt{N}\)

Frequency Reuse Example

What would be the minimum distance between the centers of two cells with the same band of frequencies if cell radius is 1 km and the reuse factor is 12?

\[
\frac{D}{R} = \sqrt{3N} \\
D = (3 \times 12)^{1/2} \times 1 \text{ km} \\
= 6 \text{ km}
\]
The distance between cell centers with the same frequency band is required to be more than 6 km. What is the cell radius for the cluster size of 12.
Frequency Reuse Notation

- N×S×K frequency reuse pattern
- N = Number of cells per cluster
- S = Number of sectors in a cell
- K = Number of frequency allocations per cell

1X3X3
Frequency Reuse Notation (Cont)

1x3x1

1x3x3

1x1x1

3x1x1

3x3x1

3x3x3
Fractional Frequency Reuse

- Users close to the BS use all frequency subchannels
- Users at the cell boundary use only a fraction of available subchannels
Homework 15B

Label the frequency reuse patterns below.
Cellular Telephony Generations

1G

- AMPS
- TACS

2G

- CDMA
- GSM

2.5G

- GPRS
- EDGE

3G

- WCDMA
- HSPA+
- LTE

3.5G

- LTE-Adv

4G

- CDMA2000
- UMB

Networking Industry

- Mobile WiMAX
- WiMAX2

Analog FDMA

Digital TDMA

CDMA

- Voice
- Voice+Data
- Voice+HS Data
- All-IP

FDMA

TDMA

CDMA

1G

2.5G

2G

3G

3.5G

4G

©2016 Raj Jain
Cellular Generations (Cont)

- **1G: Analog Voice. FDMA. 1980s**
 - AMPS: Advanced Mobile Phone System
 - TACS: Total Access Communications System

- **2G: Digital Voice. TDMA. 1990**
 - NA-TDMA
 - Digital AMPS (D-AMPS)
 - **GSM**: Global System for Mobile Communications

- **2.5G: Voice + Data. 1995.**
 - 1xEV-DO: Evolution Data Optimized
 - 1xEV-DV: Evolution Data and Voice
 - General Packet Radio Service (GPRS)
 - Enhanced Data Rate for GSM Evolution (EDGE)
Cellular Generations (Cont)

- **3G: Voice + High-speed data. All CDMA. 2000.**
 - W-CDMA: Wideband CDMA
 - TD-SCDMA: Time Division Synchronous Code Division Multiple Access (Chinese 3G)
 - 384 kbps to 2 Mbps

- **3.5G: Voice + Higher-speed data**
 - EDGE Evolution
 - High-Speed Packet Access (HSPA)
 - Evolved HSPA (HSPA+)
 - Ultra Mobile Broadband (UMB)
Cellular Generations (Cont)

- Two Tracks for 1G/2G/3G:
 - Europe 3GPP (3rd Generation Partnership Project)
 - North America 3GPP2
- **3.9G: High-Speed Data. VOIP. OFDMA.**
 - WiMAX 16e (Worldwide Interoperability for Microwave Access)
 - Long Term Evolution (LTE)
- **4G: Very High-Speed Data. 2013.**
 - WiMAX 16m or WiMAX2
 - LTE-Advanced
 - 100 Mbps – 1 Gbps
- **5G: Ultra High-Speed Data. 2020.**
 - IP based
3.9G vs. 4G

- 4G = IMT-Advanced
 = LTE-Advanced, IEEE 802.16m
- WiMAX forum officially declared WiMAX to be 3G technology so that they can use spectrum allocated to 3G.
- WiMAX, LTE are at most 3.9G or “near-4G”
 Some telecom companies are selling them as 4G
Global System for Mobile Communications
- Implemented in 90% of cell phones world-wide.
- 1990 Technology using Time-Division Multiple Access (TDMA) in stead of Frequency Division Multiple Access (FDMA) used in 1G
- 850/900/1800/1900 MHz (quad-band)
- Subscriber Identity Module (SIM) card contained user data. User could use any phone with his/her SIM card
GSM Cellular Architecture

- Subscriber Identity Module
- Base Transceiver Station
- Mobile Equipment
- Mobile Station Base Station Subsystem
- Radio Access Network
- Network Subsystem

Base Station Controller

Home Location Register
Visitor Location Register
Mobile services Switching Center
Equipment Identity Register
Authentication Center

Public Switched Telephone Network
Cellular Architecture (Cont)

- One Base transceiver station (BTS) per cell.
- One Base Station Controller (BSC) can control multiple BTSes.
 - Allocates radio channels among BTSs.
 - Manages call handoffs between BTSs.
 - Controls handset power levels
- Mobile Switching Center (MSC) connects to PSTN and switches calls between BSCs. Provides mobile registration, location, authentication. Contains Equipment Identity Register.
Cellular Architecture (Cont)

- **Home Location Register (HLR)** and Visitor Location Register (VLR) provide call routing and roaming.
- VLR+HLR+MSC functions are generally in one equipment.
- Equipment Identity Register (EIR) contains a list of all valid mobiles.
- Authentication Center (AuC) stores the secret keys of all SIM cards.
- Each handset has a International Mobile Equipment Identity (IMEI) number.
GSM Radio Link

Slow Associated Control Channel (SACCH)

Traffic Channels

Unused

0 1 2
10 11 12 13 14
23 24 25

Multiframe 120 ms

TDMA Frame 120/26 ms

Burst Period

Traffic Channels

15/26 ms

Preamble

Well Known Pattern

Tail Bits 3
Data Bits 57
Stealing Bits 1
Training Sequence 26
Stealing Bits 1
Data Bits 57
Tail Bits 3
Guard Bits 8.25

Washington University in St. Louis http://www.cse.wustl.edu/~jain/cse574-16/ ©2016 Raj Jain
GSM Radio Link (Cont)

- 890-915 MHz uplink, 935-960 MHz downlink
- 25 MHz $\Rightarrow 125 \times 200$ kHz frequency channels
- Each frequency channel is TDMA with burst (slot) period of 15/26 ms.
- Eight burst periods $= $ TDMA frame of 120/26 ms.
- One user traffic channel $= $ one burst period per TDMA frame.
- 26 TDMA frames $\Rightarrow $ one Multiframe
 24 are used for traffic, 1 for control, and 1 is unused.
 Slow Associated Control Channel (SACCH)
 If SACCH does not have sufficient capacity, Fast Associated Control Channel (FACCH) is used by stealing $\frac{1}{2}$ of some bursts.
- **Stealing bits** identify whether the 1/2-slot carries data or control
- 200 kHz $= 270.8$ kbps over 26 slots
 $\Rightarrow 9.6$ kbps/user after encryption and FEC overhead
GSM Specs

- Full rate vocoders ⇒ Voice is sampled at 64 kbps compressed to 16 kbps.
- Subscriber Identify Module (SIM) contains a micro-controller and storage. Contains authentication, encryption, and accounting info. Owners need 4-digit PIN.
- SIM cards can contain additional info such as emergency medical info.
- Mobile Assisted Handoff: Mobile sends identities of six candidate base stations for handoff. MSC selects.
- Short Message Service (SMS)
 - Up to 160 characters
 - Sent over control channel
 - Unicast or broadcast
Cellular System Capacity Example

A particular cellular system has the following characteristics: cluster size = 7, uniform cell size, user density = 100 users/sq km, allocated frequency spectrum = 900-949 MHz, bit rate required per user = 10 kbps uplink and 10 kbps downlink, and modulation code rate = 1 bps/Hz.

A. Using FDMA/FDD:
 1. How much bandwidth is available per cell using FDD?
 2. How many users per cell can be supported using FDMA?
 3. What is the cell area?
 4. What is the cell radius assuming circular cells?

B. If the available spectrum is divided in to 35 channels and TDMA is employed within each channel:
 1. What is the bandwidth and data rate per channel?
 2. How many time slots are needed in a TDMA frame to support the required number of users?
 3. If the TDMA frame is 10ms, how long is each user slot in the frame?
 4. How many bits are transmitted in each time slot?
A particular cellular system has the following characteristics: cluster size = 7, uniform cell size, user density = 100 users/sq km, allocated frequency spectrum = 900-949 MHz, bit rate required per user = 10 kbps uplink and 10 kbps downlink, and modulation code rate = 1 bps/Hz.

A. Using FDMA/FDD:
1. How much bandwidth is available per cell using FDD?
 49 MHz/7 = 7 MHz/cell
 FDD \(\Rightarrow\) 3.5 MHz/uplink or downlink
2. How many users per cell can be supported using FDMA?
 10 kbps/user = 10 kHz \(\Rightarrow\) 350 users per cell
3. What is the cell area?
 100 users/sq km \(\Rightarrow\) 3.5 Sq km/cell
4. What is the cell radius assuming circular cells?
 \(\pi r^2 = 3.5 \Rightarrow r = 1.056\) km
Cellular System Capacity (Cont)

B. If the available spectrum is divided into 35 channels and TDMA is employed within each channel:

1. What is the bandwidth and data rate per channel?
 \[\frac{3.5 \text{ MHz}}{35} = 100 \text{ kHz/Channel} = 100 \text{ kbps} \]

2. How many time slots are needed in a TDMA frame to support the required number of users?
 \[10 \text{ kbps/user} \Rightarrow 10 \text{ users/channel} \]

3. If the TDMA frame is 10 ms, how long is each user slot in the frame?
 \[10 \text{ ms} / 10 = 1 \text{ ms} \]

4. How many bits are transmitted in each time slot?
 \[1 \text{ ms} \times 100 \text{ kbps} = 100 \text{ b/slot} \]
A particular cellular system has the following characteristics: cluster size = 9, uniform cell size, user density = 100 users/sq km, allocated frequency spectrum = 900-945 MHz, bit rate required per user = 10 kbps uplink and 10 kbps downlink, and modulation code rate = 2 bps/Hz.

A. Using FDMA/FDD:
 1. How much bandwidth is available per cell using FDD?
 2. How many users per cell can be supported using FDMA?
 3. What is the cell area?
 4. What is the cell radius assuming circular cells?

B. If the available spectrum is divided into 100 channels and TDMA is employed within each channel:
 1. What is the bandwidth and data rate per channel?
 2. How many time slots are needed in a TDMA frame to support the required number of users?
 3. If the TDMA frame is 10ms, how long is each user slot in the frame?
 4. How many bits are transmitted in each time slot?
GPRS

- General Packet Radio Service (GPRS). 2.5G Technology
- Standard GSM has 8 slots per 200 kHz channel
 One slot/user \Rightarrow 9.6 kbps data/user
- GPRS allows any number of slots to a user
 - 4 different codings used depending upon channel condition
 - 9.6 kbps to 21.4 kbps per slot
 - 76-171 kbps using all 8 slots.
- GPRS user can hop frequency channels

<table>
<thead>
<tr>
<th>Gi = GSM User</th>
<th>Gpi = GPRS User</th>
</tr>
</thead>
<tbody>
<tr>
<td>Uplink 1</td>
<td>t₀ t₁ t₂ t₃ t₄ t₅ t₆ t₇ t₀ t₁ t₂</td>
</tr>
<tr>
<td>Uplink 2</td>
<td>G₁ G₂ GP₂</td>
</tr>
<tr>
<td>Downlink 1</td>
<td>G₁ GP₁ G₂</td>
</tr>
<tr>
<td>Downlink 2</td>
<td>GP₁</td>
</tr>
</tbody>
</table>
GPRS (Cont)

- Supports intermittent and bursty data transfers
 Point-to-multipoint also supported
- Need to add two new elements to GSM networks:
 - **Service** GPRS support node (SGSN)
 - Security, Mobility, Access control for data packet
 - **Gateway** GPRS support node (GGSN)
 - Connects to external packet switched networks
- Standardized by ETSI
GSM/GPRS Network Architecture

Washington University in St. Louis http://www.cse.wustl.edu/~jain/cse574-16/ ©2016 Raj Jain
EDGE

- Enhanced Data Rates for GSM Evolution (EDGE)
- Standard GSM uses Gaussian Minimum Shift Keying (GMSK) modulation.
 - Data stream is shaped with a Gaussian filter before frequency modulation
- EDGE changes to 8-PSK modulation \Rightarrow 3 bps/Hz
- GPRS+EDGE \Rightarrow 384 kbps
- Need better radio signal quality
- GSM-EDGE Radio Access Network (GERAN)
W-CDMA

- Wideband Code Division Multiple Access
- European 3G
- Aka Universal Mobile Telecommunications System (UMTS)
- Uses Direct Sequence Spread Spectrum over two 5 MHz FDD channels
- Radio access network is called “UMTS Terrestrial Radio Access Network (UTRAN)”
- Air interface is called “UMTS Terrestrial Radio Access (UTRA)”
High-Speed Packet Access (HSPA)

- Evolution (extension) of W-CDMA
- High-Speed Downlink **Packet** Access (HSDPA):
 - Adaptive modulation and coding
 - Channel dependent scheduling
 - Higher order modulations, e.g., 16-QAM
- High-Speed Uplink Packet Access (HSUPA):
 - Parallel transmissions from multiple users
- HSPA = HSDPA+HSUPA
 - Up to 64-QAM
- HSPA+: Evolution of HSPA. Up to 168 Mbps down, 22 Mbps up using MIMO and multiple carriers
Evolved Packet System (EPS)

Radio Access Network

- GSM Edge
 - 2-2.5G
 - MS
 - GERAN

- WCDMA
 - 3-3.5G
 - NodeB
 - RNC
 - UTRAN

- E-UTRAN
 - 3.9 G
 - UE
 - LTE
 - eNB

Serving Network Core Network

- Circuit Switched Core
 - MSC
 - MGW

- Packet Switched Core
 - SGSN

- Evolved Packet Core
 - MME/S-GW
 - P-GW

- Internet
 - SS7
 - GGSN
 - SGW

Washington University in St. Louis
http://www.cse.wustl.edu/~jain/cse574-16/
©2016 Raj Jain
Evolved Packet System (Cont)

- CS = Circuit Switched
- EPC = Evolved Packet Core
- EPS = Evolved Packet System
- GERAN = GSM Enhanced Radio Access Network
- GGSN = Gateway GPRS Support Node
- LTE = Long Term Evolution
- MGW = Media Gateway
- MME = Mobility Management Utility
- MSC = Mobile Switching Center
- P-GW = Packet Gateway
- PS = Packet Switched
- RNC = Radio Network Control
- S-GW = Serving Gateway
- SGSN = Service GPRS Support Node
- SS7 = Signaling System 7
- eNB = Evolved NodeB
Summary

1. In a cellular cluster of size N, the same distance between cells with same frequencies is $D = R\sqrt{3N}$. Here R is the cell radius.
2. 1G was analog voice with FDMA
3. 2G was digital voice with TDMA. Most widely implemented 2G is GSM. Data rate was improved by GPRS and EDGE.
4. 3G was voice+data with CDMA. Most widely implemented 3G is W-CDMA using two 5 MHz FDD channels.
5. Data rate was improved later using HSPA and HSPA+.
Reading List

Wikipedia Links

- http://en.wikipedia.org/wiki/Advanced_Mobile_Phone_System
References

- 3G Americas, http://www.3gamericas.org
Acronyms

- 3GPP 3rd Generation Partnership Project
- AMPS Advanced Mobile Phone System
- AuC Authentication Center
- BS Base Station
- BSC Base Station Controller
- BTS Base transceiver station
- CDMA Code Division Multiple Access
- CS Circuit Switched
- DO Data-Only
- DV Data+Voice
- EDGE Enhanced Data rate for GSM evolution
- EIR Equipment Identity Register
- eNB eNodeB
- EPC Evolved Packet Core
- EPS Evolved Packet System
- ETSI European Telecommunications Standards Institute
<table>
<thead>
<tr>
<th>Acronym</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>EVDO</td>
<td>Evolution to Data only</td>
</tr>
<tr>
<td>EVDV</td>
<td>Evolution to Data and voice</td>
</tr>
<tr>
<td>FACCH</td>
<td>Fast Associated Control Channel</td>
</tr>
<tr>
<td>FDD</td>
<td>Frequency Division Duplexing</td>
</tr>
<tr>
<td>FDMA</td>
<td>Frequency Division Multiple Access</td>
</tr>
<tr>
<td>FEC</td>
<td>Forward Error Correction</td>
</tr>
<tr>
<td>GERAN</td>
<td>GSM Enhanced Radio Access Network</td>
</tr>
<tr>
<td>GGSN</td>
<td>Gateway GPRS Support</td>
</tr>
<tr>
<td>GMSK</td>
<td>Gaussian Minimum Shift Keying</td>
</tr>
<tr>
<td>GPRS</td>
<td>General Packet Radio Service</td>
</tr>
<tr>
<td>GSM</td>
<td>Global System for Mobile Communications</td>
</tr>
<tr>
<td>HSDPA</td>
<td>High-speed Downlink Packet Access</td>
</tr>
<tr>
<td>HSPA</td>
<td>High-speed Packet Access</td>
</tr>
<tr>
<td>HSPA+</td>
<td>Evolved High-speed Packet Access</td>
</tr>
<tr>
<td>HSUPA</td>
<td>High-Speed Uplink Packet Access</td>
</tr>
<tr>
<td>IEEE</td>
<td>Institution of Electrical and Electronic Engineers</td>
</tr>
</tbody>
</table>
Acronyms (Cont)

- IMEI International Mobile Equipment Identity
- IMT-2000 International Mobile Communications 2000
- IMT-Advanced International Mobile Communications Advanced
- IP Internet Protocol
- IS International Standard
- kHz Kilo Hertz
- LTE Long-Term Evolution
- MGW Media Gateway
- MHz Mega Hertz
- MIMO Multiple Input Multiple Output
- MME Mobility Management Utility
- MSA Metropolitan Service Areas
- MSC Mobile Switching Center
- NA-TDMA North America Time Division Multiple Access
- NA North America
- NIMBY Not in my backyard
Acronyms (Cont)

- NodeB Base Station
- OFDMA Orthogonal Frequency Division Multiple Access
- PIN Personal Identification Number
- PS Packet Switched
- PSK Phase Shift Keying
- PSTN Public Switched Telephone Network
- QAM Quadrature Amplitude Modulation
- RNC Radio Network Control
- RSA Rural Service Areas
- SACCH Slow Associated Control Channel
- SCDMA Synchronous CDMA
- SGSN Service GPRS Support Node
- SGW Service Gateway
- SIM Subscriber Identify Module
- SMS Short Message Service
- SS7 Signaling System 7
Acronyms (Cont)

- TACS Total Access Communications System
- TD-SCDMA Time Duplexed Synchronous Code Division Multiple Access
- TDMA Time Division Multiple Access
- UE User Element
- UMB Ultra Mobile Broadband
- UMTS Universal Mobile Telecommunications System
- UTRA UMTS Terrestrial Radio Access
- UTRAN UMTS Terrestrial Radio Access Network
- VLR Visitor Location Register
- VOIP Voice over IP
- WCDMA Wideband Code Division Multiple Access
- WiMAX Worldwide Interoperability for Microwave Access
Related Modules

Internet of Things,
http://www.cse.wustl.edu/~jain/cse574-16/j_10iot.htm

Introduction to LTE-Advanced,
http://www.cse.wustl.edu/~jain/cse574-16/j_17lta.htm

Introduction to 5G,
http://www.cse.wustl.edu/~jain/cse574-16/j_195g.htm

Low Power WAN Protocols for IoT,
http://www.cse.wustl.edu/~jain/cse574-16/j_14ahl.htm

Audio/Video Recordings and Podcasts of Professor Raj Jain's Lectures,
https://www.youtube.com/channel/UCN4-5wzNP9-ruOzQMs-8NUw