Recent Trends in Networking

Raj Jain
Washington University in Saint Louis
Saint Louis, MO 63130
Jain@cse.wustl.edu

These slides and audio/video recordings of this class lecture are at:
http://www.cse.wustl.edu/~jain/cse570-19/
1. Virtualization
2. Edge Computing
3. Disaggregation
4. Black Box to White Box
5. Decomposition
6. Microservices on Bare Metal
7. Intent-Based Policy Management
8. CI/CD
9. Reactive to Proactive
10. Standards to Open Source Software
11. Self-Driving Networks
Trend: Virtualization

- Started with virtual memory ⇒ virtual disk ⇒ Virtual Compute ⇒ Virtual Networks ⇒ Virtual Machines ⇒ Clouds ⇒ Virtual Network Functions ⇒ NFV ⇒ Micro-Services
Computing vs. Networking: Speed

- Moore’s Law ⇒ Compute power grew 2x every 18 months
- Memory size grew 2x every 18 months
- Amdahl’s Law: 1 Bit i/o per instruction
- I/O grew 2x every 18 months
- Networking speeds need to grow 2x every 18 months
- 10 Mbps Ethernet in 1980 to 400 Gbps in 2018
- 40,000x in 38 years ⇒ 2x every 30 months
- Network is still the bottleneck
The Magic Word α
Distance-B/W Principle

- Efficiency = Max throughput/Media bandwidth
- Efficiency is a decreasing function of α
 $\alpha = \text{Propagation delay} / \text{Transmission time}$
 $= (\text{Distance}/\text{Speed of signal})/\{(\text{Transmission size}/\text{Bits/sec})\}$
 $= \text{Distance} \times \text{Bits/sec}/\{(\text{Speed of signal})(\text{Transmission size})\}$
- Bit rate-distance-transmission size tradeoff.
- 100 Mb/s \Rightarrow Change distance or frame size
Trend: Edge Computing

- Network protocols have the same performance as long as α is same.
- Multiple short networks are more economical than one long network
- Multiple short networks can transport more bits than one long distance network \Rightarrow Small Cells \Rightarrow Edge computing
Impact of High-Speed Networks

- Distance became inconsequential
 ⇒ Globalization of information
 ⇒ Globalization of trade
 ⇒ Globalization of computing

- No need for local caching of information ⇒ Cloud storage

- No need for local computing ⇒ Cloud computing
Trend: Disaggregation

- Disaggregation of software and hardware
- Software on any hardware ⇒ hardware can change
 Different software on a hardware ⇒ Software can change
- Open source software on commodity hardware
Impact of High-Speed Hardware

- General purpose processors were fast enough for most computation
 ⇒ No need for special purpose hardware
 ⇒ All specialization and differentiation via software
 ⇒ White box networking
Trend: Black Box to White Box

- Black Box: Proprietary
- White Box: Open Source Hardware
Network Operating Systems

- OpenNetworkLinux: Linux distribution for open switches. Part of OCP.
- OpenSwitch: Open Network Operating System for switches under Linux Foundation
- ONIE: Open Network Install Environment. Part of OCP.
- SONiC: Software for Open Networking in Cloud. Open “switch OS” from Microsoft to run on white box switches
- Cumulus Linux: Network OS
- Switch Light OS: Network OS from BigSwitch Network based on ONL
- Big Cloud Fabric: Datacenter switch controller
- Big Monitor Fabric: Network monitoring and Security from BigSwitch networks
- IP Infusion OcNOS: Network OS
- IXIA Vision Edge OS: Monitoring software for open switches
- Pica8 PicOS: Switch operating system based on XORP open router platform. It runs on a Linux kernel and provides network and switching services.
- Pluribus Open Netvisor Linux: Network OS from Pluribus. Partners with Dell open switches.
- SnapRoute FlexSwitch: Set of networking applications, e.g., ARP, DHCP, BGP, VLAN, written in Go by SnapRoute. Accelerated by hardware. Merged in to Open Network Linux at OCP.

White Box Switches

- EdgeCore Networks (ACTON)
- Quanta
- HPE
- DNI
- Dell
- Mellanox
- Delta Agema
- Celestica
- Alpha Networks
- Ingrasys
- Inventec
- Netberg
ASICs for White Box Switches

- Broadcom, Marvell, Intel/Fulcrum, Mellanox
- P4 ASICs from Barefoot Networks, and Cavium (by Xpliant acquisition)
- CPUs: Intel Rangeley, Freescale, ARM A9,
Trend: Decomposition

- Decompose a large complex application into microservices.
- Each service implements a small set of strongly related functions.
- Functions that change together should be packaged together.
 - Can develop and deploy independently of other services.
- Loosely coupled: API binds it to other services. The implementation can be changed without affecting the result.
- Measurable, Testable.
- Decomposition by:
 - Subdomains/Departments: Inventory, Order, Delivery, …
 - Capability:
- This allows some functions to be moved to Edge Computing.

Ref: http://microservices.io/
Trend: Microservices on Bare Metal

- Clouds provide virtual machines
- There is trend against virtual machines
- Containers on bare metal ⇒ Kata Container
Cloud Native Applications

- Applications that run on multi-cloud
- Run on multiple servers at different locations
- Must be decomposed to allow faults
- Applications assembled as microservices in Linux containers
- Cloud Native Computing Foundation (CNCF) – Linux Foundation project

Ref: https://searchitoperations.techtarget.com/definition/native-cloud-application-NCA
Serverless

- Don’t need a local server. Just use cloud.
- Developers can work on an application without needing IT organization to provision hardware
Intent-Based Policy Management

- Intent: Tell what you want done
 Not how you want it done
 Example: Tell phone where you want to go. Fastest time, Shortest path, highway, …

- Invariance: Intent doesn’t change if the network changes, devices fail, …

- Portability: Independent of infrastructure, equipment vendors, service providers, protocols used, media used, …

- Compose-ability: Can use any combination of infrastructure, …

- Scalable: From one to billions. Single controllers aren’t scalable.

- Action requires context: Actions need to adopt to sudden changes in infrastructure,… ⇒ Rule-based, table-based approaches may not work

- Opendaylight has a new project on Network Intent Composition (NIC)

Ref: https://www.sdxcentral.com/articles/contributed/network-intent-summit-perspective-david-lenrow/2015/02/
https://wiki.opendaylight.org/view/Project_Proposals:Network_Intent_Composition

Washington University in St. Louis http://www.cse.wustl.edu/~jain/cse570-19/ ©2019 Raj Jain
Trend: CI/CD

- Continuous Integration/Continuous Delivery
- Developer to Operations (DevOps)
Trend: Reactive to Proactive

- Past: Find failed components. Find why it failed?
- Now: Find components that will fail soon
- Anticipate what the future will be and act before it actually happens
- Causal Analysis: Why it failed

Which would you prefer?

Proactive
Helps protect you from drowning.

Reactive
Thrown to you after you’re already drowning.
Black Box AI to Transparent AI

- Machine learning is currently a blackbox
- ML algorithms are developed/used without domain expertise
- Data cleanliness, labeling, feature extractions, all require domain knowledge, e.g.,
 What is the distance between Port 80, Port 81, and Port 8080?
- Data Imbalance (1 in a million packet is an attack packet).
- Use Synthetic data is used ⇒ Garbage-In, Garbage-Out
- Results are stated without model validation.
- Explainability issue ⇒ No idea of why the results are what they are
Standards are Slow

- Initially, Standards ⇒ Interoperability
 If all companies implemented the same standard in the same way, they could interoperate

- Standards=Compromises ⇒ We agree to disagree
 All differing opinions are part of the standard as option
 The standard is approved but different companies choose different options
 ⇒ No Interoperability

- Need Interoperability organizations
 - WiFi ⇒ Approves the subset of standard that is mandatory

- All this introduces delay ⇒ The standard is out of date when it is ready for implementation

- IEEE 802.11ah-2016 Long-Range WiFi for IoT. Started 2010. Taken over by competition: ZigBee, LoraWAN, …

- Standards are static. Can’t change quickly.

Ref: http://www.ieee802.org/11/Reports/802.11_Timelines.htm
Standards are not Open

- Open ⇒ Anyone can implement it without fee
- IETF allows “non-discriminatory and reasonable licensing fee” ⇒ Not really open
- Open Source Initiative (OSI) Criteria:
 - No intentional secrets
 - Free and publicly available
 - All patents must be royalty-free for unrestricted use
 - No license agreements, NDA, or paperwork to implement
 - Not dependent on non-open standards

Trend: Open Source Software

- Standardization to Rough Consensus and Running Code

- IETF has ~100 working groups
 Open Linux Foundation has >100 open source networking projects. Their website can’t be kept uptodate.

- 4 Opens:
 - Open Source
 - Open Design
 - Open Development
 - Open Community
Trend 11: Managed to Self-Driven Networks

- **Self-Discover**: Find its components
- **Self-Organize and Self-configure**: Trending. Predict.
- **Auto-Manage** = Auto-BSS (bill)/Auto-OSS (provision)
- **Self-Monitor**: Counters and Probes. Telemetry
- **Self-Diagnose and Self-Heal**: Self-Report to human operator

Washington University in St. Louis
http://www.cse.wustl.edu/~jain/cse570-19/
Summary

<table>
<thead>
<tr>
<th>#</th>
<th>Past</th>
<th>Present/Future</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>SDN</td>
<td>Disaggregation</td>
</tr>
<tr>
<td></td>
<td>Proprietary Black Boxes</td>
<td>Standardized White Boxes</td>
</tr>
<tr>
<td>2</td>
<td>Control</td>
<td>Orchestration</td>
</tr>
<tr>
<td>3</td>
<td>Clouds</td>
<td>Micro-Clouds</td>
</tr>
<tr>
<td>4</td>
<td>Core</td>
<td>Edge</td>
</tr>
<tr>
<td>5</td>
<td>Services</td>
<td>Micro-services</td>
</tr>
<tr>
<td>6</td>
<td>Orchestration of Switches</td>
<td>Orchestration of Multi-Cloud</td>
</tr>
<tr>
<td>7</td>
<td>Virtualization</td>
<td>Containerization</td>
</tr>
<tr>
<td>8</td>
<td>Standards</td>
<td>Open-Source SW</td>
</tr>
<tr>
<td>9</td>
<td>Centralized</td>
<td>Distributed</td>
</tr>
<tr>
<td>10</td>
<td>Smart</td>
<td>Intelligent</td>
</tr>
<tr>
<td>11</td>
<td>Managed</td>
<td>Self-Driven</td>
</tr>
</tbody>
</table>
References

- http://microservices.io/
- https://opensource.org/osr
- https://github.com/cncf/landscape
- http://www.spdk.io/
- https://dirtycow.ninja/
- https://github.com/kata-containers/community
Wikipedia Links

- https://en.wikipedia.org/wiki/Native_cloud_application
- https://en.wikipedia.org/wiki/Linux_Foundation
- https://en.wikipedia.org/wiki/Microservices
- https://en.wikipedia.org/wiki/Proactive_maintenance
- https://en.wikipedia.org/wiki/Continuous_deployment
- https://en.wikipedia.org/wiki/White_box_(computer_hardware)
Wikipedia Links (Cont)

- https://en.wikipedia.org/wiki/Micro_data_center
- https://en.wikipedia.org/wiki/Mobile_virtualization
Acronyms

- **AI**: Artificial Intelligence
- **API**: Application Programming Interface
- **ARM**: Advanced RISC Machines
- **ASICs**: Application Specific Integrated Circuits
- **BGP**: Border Gateway Protocol
- **BSS**: Business Support Systems
- **CI/CD**: Continuous Integration/Continuous Delivery
- **CNCF**: Cloud Native Computing Foundation
- **CRUD**: Create Read Update and Delete
- **DevOps**: Developer to Operations
- **DHCP**: Dynamic Host Control Protocol
- **IEEE**: Institution of Electrical and Electronic Engineers
- **IETF**: Internet Engineering Task Force
- **IoT**: Internet of Things
- **IT**: Information Technology
- **NCA**: Native Cloud Application
Acronyms (Cont)

- NDA Non-Disclosure Agreement
- NIC Network Intent Composition
- OCP Open Compute Project
- ONIE Open Network Install Environment
- ONL Open Network Linux
- OS Operating System
- SONiC Software for Open Networking in the Cloud
- TV Television
- VLAN Virtual Local Area Network
- WiFi Wireless Fidelity
- XORP eXensible Open Router Platform
Scan This to Download These Slides

Raj Jain
http://rajjain.com
Related Modules

CSE567M: Computer Systems Analysis (Spring 2013),
https://www.youtube.com/playlist?list=PLjGG94etKypJEKjNAa1n_1X0bWWNyZcof

CSE473S: Introduction to Computer Networks (Fall 2011),
https://www.youtube.com/playlist?list=PLjGG94etKypJWOSPMh8Azcgy5e_10TiDw

Wireless and Mobile Networking (Spring 2016),
https://www.youtube.com/playlist?list=PLjGG94etKypKeb0nzyN9tSs_HCd5c4wXF

CSE571S: Network Security (Fall 2011),
https://www.youtube.com/playlist?list=PLjGG94etKypKvzfVtutHcPFJXumyyg93u

Video Podcasts of Prof. Raj Jain's Lectures,
https://www.youtube.com/channel/UCN4-5wzNP9-ruOzQMs-8NUw