Data-Link Layer and Management Protocols for IoT

Raj Jain
Washington University in Saint Louis
Saint Louis, MO 63130
Jain@cse.wustl.edu

These slides and audio/video recordings of this class lecture are at:
http://www.cse.wustl.edu/~jain/cse570-18/
Overview

- Recent Protocols for IoT
- Power Line Communication (PLC)
- HomePlug, HomePlug AV, HomePlug AV2, BPL, Netricity
- IEEE 1905.1 Management, Security, and Configuration
- Smart Cards

Note: This is part 2 of a series of class lectures on IoT. Wireless datalink protocols are covered in CSE 574 Wireless Network Class. More protocols are covered in other parts of this series.
Recent Protocols for IoT

Session
- MQTT, SMQTT, CoRE, DDS, AMQP, XMPP, CoAP, IEC, IEEE 1888, …

Encapsulation
- 6LowPAN, 6TiSCH, 6Lo, Thread…

Routing
- RPL, CORPL, CARP

Network
- WiFi, Bluetooth Low Energy, Z-Wave, ZigBee Smart, DECT/ULE, 3G/LTE, NFC, Weightless, HomePlug GP, 802.11ah, 802.15.4e, G.9959, WirelessHART, DASH7, ANT+, LTE-A, LoRaWAN, ISA100.11a, DigiMesh, WiMAX, …

Security
- IEEE 1888.3, TCG, Oath 2.0, SMACK, SASL, EDSA, ace, DTLS, Dice, …

Management

Washington University in St. Louis http://www.cse.wustl.edu/~jain/cse570-18/
©2018 Raj Jain
L2 Protocols for IoT

Most of the L2 IoT protocols are wireless.

- **Wireless Protocols**: WiFi, Bluetooth Low Energy, Z-Wave, ZigBee Smart, DECT/ULE, 3G/LTE, NFC, Weightless, IEEE 802.11ah, IEEE 802.15.4, G9959, WirelessHart, DASH7, ANT+, LTE-A, LoraWAN, ISA 100.11a, DigiMesh, etc. These are covered in CSE 574 Wireless and Mobile Networking class.

- **Wired Protocols**: In this lecture, we cover Powerline Communications (HomePlug GP) and associated management protocols.

Power Line Communication (PLC)

- Started in 1950 for remote ignition and lighting of street lights. 100 Hz and 1 kHz signals over electrical wires.
- Two way systems using 3-148.5 kHz for reading electric meters, and home automation, alarms etc.

Evolution

- 1990: X10, Passport
- 1995: CEBus
- 2000: LonWorks, Main.net, Ascom
- 2005: SPiDCOM, HP Turbo, HP 1.0, DS2, HP AV
- 2010: HP BPL, HP AV2, GreenPHY
- 2015: IEEE 1901

Washington University in St. Louis http://www.cse.wustl.edu/~jain/cse570-18/ ©2018 Raj Jain
Broadband Over Power Lines (BPL)

- High-speed internet connection using power lines (like DSL)
- Also known as HomePlug-BPL. Incorporated in IEEE 1901-2010
- Not cost competitive with optical fiber or DSL ⇒ Suitable only for remote locations
- High-frequency signal cannot pass through transformers and so the signal has to be bypassed using a repeater
- In US, 1 transformer per house ⇒ Very expensive
 In Europe: 1 transformer per 10-100 houses ⇒ More cost effective
- Radio frequency interference with existing wireless services is avoided using OFDM

Ref: http://en.wikipedia.org/wiki/Broadband_over_power_lines
OFDM

- Orthogonal Frequency Division Multiplexing
- Ten 100 kHz channels are better than one 1 MHz Channel
 ⇒ Multi-carrier modulation
- Frequency band is divided into 256 or more sub-bands. Orthogonal ⇒ Peak of one at null of others
- Each carrier is modulated with a BPSK (2bps/Hz), QPSK (4 bps/Hz), 16-QAM (8bps/Hz), 64-QAM (16 bps/Hz) etc depending on the noise (Frequency selective fading)
- Used in 802.11a/g, 802.16, Digital Video Broadcast handheld (DVB-H)
- Easy to implement using FFT/IFFT
HomePlug

- HomePlug 1.0
- HomePlug AV
- HomePlug AV2
- HomePlug GP
- HomePlug BPL
Connected Home

- Television: 2012/10
- Air Conditioner: 2013/03
- Refrigerator: 2013/11
- Projector: 2013/12
HomePlug AV

- HomePlug Alliance: Industry consortium for power line communications
 Disbanded in October 2016.
- 90% of PLC devices use HomePlug
- 1.8 MHz to 30 MHz spectrum = 28 MHz ⇒ 20 to 200 Mbps
- Multipath distortion
- **Orthogonal Frequency Division Multiplexing (OFDM):**
 Using 1155 carriers at 24.414 kHz spacing of which 917 are used for signal.
 Rest as pilots.
- **Adaptive bit loading:** Each carrier is modulated based on the noise level
 and multipath at that frequency.
 2-bits/symbol to 10 bits/symbol.
- **Tone Maps:** Each receiver keeps a table of signal strengths from each of the
 other receivers ⇒ n-1 tone maps in a n-device system
HomePlug AV (Cont)

- **Robust OFDM** (ROBO) mode for highly reliable transmission. The same information is transmitted on 2-5 subcarriers using a low-bit rate modulation.
- Use only Line-neutral pair (ground is not used).
- Four channel access priorities.
- MAC is similar to that of WiFi ⇒ **Carrier Sense Multiple Access (CSMA)**.
- All devices part of the same trust domain form a “**AV Logical Network** (AVLN).”
- All members of the AVLN share a Network Membership Key 128-bit AES.
- Each AVLN has a **central coordinator (CCo)**.
HomePlug AV (Cont)

- CCo transmits beacons containing schedule
- Long best effort transmissions declare their queues to CCo and use a pre-allocated **persistent shared CSMA** region
- Short best effort transmissions use **non-persistent CSMA** region.
- Real-time traffic uses periodic time division multiple access (TDMA) allocation in the **contention-free** period
- Before video transmission, the transmitter tests the channel for achievable throughput. Helps determine the required transmission interval per beacon period
HomePlug AV Security

- A station can participate in a AVLN if it has the **Network membership key (NMK)**. A station with multiple keys can participate in multiple AVLNs.
- All devices have a default NMK and so can form the network. Users should program the devices to use specific NMK.
- Once a device has a NMK, it will be given the **network encryption key** which is used to encrypt the data.
- If there are multiple networks on the same wire, CCos coordinate their transmission schedules.
HomePlug AV2

- Gigabit networking using home powerline wiring. Peak PHY rate of 1.256 Gbps. 600 Mbps net throughput.
- Can transmit multiple HD video streams
- Compatible with HomePlug AV devices on the same wires
 1. **Additional Spectrum**: 2MHz-86MHz (84 MHz)
 2. **Multiple-input Multiple-output (MIMO)**: transmissions using two wires with three-wire configuration (Line-Neutral, Line-Ground, Neutral-Ground)
 3. **Beam forming**: Bit loading for each transmitter
 4. **Lower overhead**: Shorter packet delimiter and delay acks.
 5. **Efficient notching**: Of noisy carriers
6. **Repeating**: Signal is demodulated and re-modulated at intermediate devices

7. **Better coding**: 12 bps/Hz and aggressive code rates (8/9)

8. **Power Control**: Manage transmission power to enhance coverage and throughput

9. **Power Save**: Stations can declare sleep periods. Other transmit only when the destination is awake.
HomePlug GreenPHY

- Designed for **home area network (HAN)** for monitoring and control of energy consuming/controlling devices including electric vehicle charging.

- Low cost. Low power. Low data rate version of HomePlug AV.
HomePlug GP (Cont)

- HomePlug GP is a profile of IEEE 1901-2010 standard for Powerline Networks and is compatible with HomePlug AV and HomePlug AV2.
- 28 MHz \Rightarrow 256 kbps to 10 Mbps using only one modulation. No tone maps.
- Use 75% less power than HomePlug AV. 75% less bill of materials.
- Devices coordinate their sleep cycle and may sleep for 2^n beacon intervals, $n=1,\ldots,10$.
- HomePlug GP 1.1 adds new power management and features for electric vehicles. Secure billing is possible at a public charging station.
Convergent Digital Home Network

- IEEE 1905.1-2013 Convergent Digital Home Network for Heterogeneous Technologies
- Combined use of WiFi, HomePlug, Ethernet, Multimedia over Coax (MoCA) in a home

http://www.cse.wustl.edu/~jain/cse570-18/
Convergent Digital Home (Cont)

- Entire home looks like a single network with automated provisioning, management, and operation
- Allows a device to aggregate throughput from multiple interfaces
- A link can be used fallback when another link fails
- An abstraction layer is used to exchange Control Message Data Unit (CMDU) among 1905.1 compliant devices
- No changes to underlying technologies is required.

<table>
<thead>
<tr>
<th>Network Layer</th>
</tr>
</thead>
<tbody>
<tr>
<td>1905.1 Abstraction Layer</td>
</tr>
<tr>
<td>802.3</td>
</tr>
</tbody>
</table>
IEEE 1905.1 Management

- 1905.1 compliant devices speak Abstraction Layer Management Entity (ALME) Protocol

<table>
<thead>
<tr>
<th>Network Layer</th>
<th>1905.1 Abstraction Layer</th>
<th>1905.1 ALME</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data Link Layer</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Physical Layer</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1905.1 Device 1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1905.1 CMDU

<table>
<thead>
<tr>
<th>Network Layer</th>
<th>1905.1 Abstraction Layer</th>
<th>1905.1 ALME</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data Link Layer</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Physical Layer</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1905.1 Device 2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
IEEE 1905.1 Management (Cont)

- ALME has messages for
 - Neighbor discovery,
 - Topology exchange,
 - Topology change notification,
 - Measured traffic statistics exchange,
 - Flow forwarding rules, and
 - Security associations

- HomePlug AV2 can be used as a backbone for Wi-Fi

- Existing IEEE 802.1 bridging protocols are used for loop prevention and forwarding
IEEE 1905.1 Security and Configuration

- **Security Setup:**
 - **Push Button**: Press buttons on new and existing devices. The new device gets the keys from the existing device.
 - User can configure **passphrase/key** in the new device.
 - **NFC**: User touches the new device with a NFC equipped smart phone which is an existing member of the network.

- **Auto configuration:**
 - New Access Points (APs) can get configuration information from existing APs.

- The certification program for IEEE 1905.1 is called “nVoy”.
 - Connects disparate networks = Network Diplomat = Network Envoy ⇒ nVoy

- Qualcomm Atheros products implementing IEEE 1905.1 are called **Hy-Fi** (for Hybrid Fidelity)
Netricity

- Long-range outside-the-home PLC for smart grid applications
- Certification for IEEE 1901.2 Low Frequency, Narrowband Powerline Communications Standard is called “Netricity”
Industrial Ethernet

- Same as regular Ethernet but with rugged connectors and designed for extended temperature/humidity environment
- Full duplex links (no CSMA/CD)
- Optical fibers (electrical interference)
- Min frame size of 64 byte may be too big for some applications

Ref: http://en.wikipedia.org/wiki/Industrial_Ethernet
Ref: http://www.cse.wustl.edu/~jain/cse570-18/
IEEE 1451

- Set of smart transducer interface for sensors and actuators
- Transducer electronic data sheets (TEDS) is a memory device that stores transducer id, calibration, correction data, and manufacturer information
- Allows access to transducer data regardless of wired or wireless connection
- XML based ⇒ Allows manufacturers to change the contents

http://www.cse.wustl.edu/~jain/cse570-18/
Summary

1. A number of datalink protocols have been proposed for IoT. Among non-wireless protocols, the most common is HomePlug.
2. HomePlug has been extended to provided higher data rate of up to 600 Mbps by HomePlug AV2 standard and to a energy saving HomePlug GP.
3. IEEE 1905.1 provides an abstraction layer to hide the details of various datalink layers, such as, ZigBee, HomePlug, WiFi, …
Reading List

Additional Reading

- Dave Evans, “The Internet of Things: How the Next Evolution of the Internet Is Changing Everything,”, Cisco white paper, April 2011,
Wikipedia Links

- http://en.wikipedia.org/wiki/Broadband_over_power_lines
- http://en.wikipedia.org/wiki/Power_line_communication
Wikipedia Links (Cont)

<table>
<thead>
<tr>
<th>Acronyms</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>6LowPAN</td>
<td>IPv6 over Low Power Wireless Personal Area Network</td>
</tr>
<tr>
<td>AES</td>
<td>Advanced Encryption</td>
</tr>
<tr>
<td>ALME</td>
<td>Abstraction Layer Management Entity</td>
</tr>
<tr>
<td>AMQP</td>
<td>Advanced Queueing Message Protocol</td>
</tr>
<tr>
<td>AP</td>
<td>Access Point</td>
</tr>
<tr>
<td>AV</td>
<td>Audio-Visual</td>
</tr>
<tr>
<td>AVLN</td>
<td>Audio-Visual Logical Network</td>
</tr>
<tr>
<td>BPL</td>
<td>Broadband Over Power Lines</td>
</tr>
<tr>
<td>BPSK</td>
<td>Binary Phase-Shift Keying</td>
</tr>
<tr>
<td>CCo</td>
<td>Central Coordinator</td>
</tr>
<tr>
<td>CD</td>
<td>Collision Detection</td>
</tr>
<tr>
<td>CEBus</td>
<td>Consumer Electronic Bus</td>
</tr>
<tr>
<td>CMDU</td>
<td>Control Message Data Unit</td>
</tr>
<tr>
<td>CoAP</td>
<td>Constrained Application Protocol</td>
</tr>
<tr>
<td>CP</td>
<td>Cyber Physical</td>
</tr>
</tbody>
</table>
Acronyms (Cont)

- CPS Cyber Physical Systems
- CSIA Cyber Security and Information Assurance
- CSMA Carrier Sense Multiple Access
- CSMA/CD Carrier Sense Multiple Access with Collision Detection
- DARPA Defense Advance Research Project Agency
- DCS DIstributed Control Systems
- DECT Digital Enchanced Cordless Telephony
- DOE Department of Energy
- DS2 Design of Systems on Silicon (name of a company)
- DSL Digital Subscriber Line
- DVB-H Digital Video Broadcast handheld
- ECMA European Computer Manufacturers Association
- FFT Fast Fourier Transform
- GE General Electric
- GP Green PHY
- GreenPHY Green Physical Layer
Acronyms (Cont)

- HAN Home Area Network
- HCSS High Confidence Software and Systems
- HD High Definition
- HDLC High-Level Datalink Control
- HEC High-End Computing
- HP HomePlug
- HPAV HomePlug Audio-Visual
- ID Identifier
- IEC International Electrotelecommunications Commission
- IEEE Institution of Electrical and Electronic Engineers
- IFFT Inverse Fast Fourier Transform
- IM Information Management
- IoT Internet of Things
- IP Internet Protocol
- IPv6 Internet Protocol V6
- ISO International Standards Organization
Acronyms (Cont)

- **IT** Information Technology
- **kHz** Kilo Hertz
- **LonWorks** Local Operating Network
- **LSN** Large Scale Networking
- **MAC** Media Access Control
- **MHz** Mega Hertz
- **MIMO** Multiple-input Multiple-output
- **MoCA** Multimedia over Coax
- **MQ** Multi-Queue
- **MQTT** MQ Telemetry Transport
- **NASA** National Aeronautical and Space Administration
- **NFC** Near Field Communication
- **NIH** National Institute of Health
- **NITRD** Networking and Info Technology Res and Development
- **NMK** Network Membership Key
- **NSF** National Science Foundation
<table>
<thead>
<tr>
<th>Acronym</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>OAuth</td>
<td>Open Standard for Authorization</td>
</tr>
<tr>
<td>OFDM</td>
<td>Orthogonal Frequency Division Multiplexing</td>
</tr>
<tr>
<td>ONR</td>
<td>Office of Naval Research</td>
</tr>
<tr>
<td>PHY</td>
<td>Physical Layer</td>
</tr>
<tr>
<td>PLC</td>
<td>Power Line Communication</td>
</tr>
<tr>
<td>PROFIBUS</td>
<td>Process Field Bus</td>
</tr>
<tr>
<td>QAM</td>
<td>Quadrature Amplitude Modulation</td>
</tr>
<tr>
<td>QPSK</td>
<td>Quadrature Phase Shift Keying</td>
</tr>
<tr>
<td>RF</td>
<td>Radio Frequency</td>
</tr>
<tr>
<td>RFID</td>
<td>Radio Frequency Identification</td>
</tr>
<tr>
<td>RPL</td>
<td>Routing Protocol for Low Power and Lossy Networks</td>
</tr>
<tr>
<td>SCADA</td>
<td>Supervisory Control and Data Acquisition</td>
</tr>
<tr>
<td>SDP</td>
<td>Software Design and Productivity</td>
</tr>
<tr>
<td>SPiDCOM</td>
<td>Name of a company</td>
</tr>
<tr>
<td>TDMA</td>
<td>Time division multiple access</td>
</tr>
<tr>
<td>TEDS</td>
<td>Transducer electronic data sheets</td>
</tr>
</tbody>
</table>
Acronyms (Cont)

- US: United States
- WiFi: Wireless Fidelity
- WorldFIP: Factory Instrumentation Protocol
- XML: Extensible Markup Language
Related Modules

CSE567M: Computer Systems Analysis (Spring 2013),
https://www.youtube.com/playlist?list=PLjGG94etKypJEKjNAa1n_1X0bWWNyZcof

CSE473S: Introduction to Computer Networks (Fall 2011),
https://www.youtube.com/playlist?list=PLjGG94etKypJWOSPMh8Azcgy5e_10TiDw

Wireless and Mobile Networking (Spring 2016),
https://www.youtube.com/playlist?list=PLjGG94etKypKeb0nzyN9tSs_HCd5c4wXF

CSE571S: Network Security (Fall 2011),
https://www.youtube.com/playlist?list=PLjGG94etKypKvzfVtutHcPFJXumyyg93u

Video Podcasts of Prof. Raj Jain's Lectures,
https://www.youtube.com/channel/UCN4-5wzNP9-ruOzQMs-8NUw