IP Switching and Multiprotocol Label Switching

Raj Jain
Professor of Computer and Information Sciences

Raj Jain is now at
Washington University in Saint Louis
Jain@cse.wustl.edu
http://www.cse.wustl.edu/~jain/
- IP Switching
- MPLS Overview
- Label Format
- Label Stacks
- Label Distribution Protocols
Routing vs Switching

Routing: Based on address lookup. Max prefix match.
 ⇒ Search Operation
 ⇒ Complexity ≈ O(log₂n)

Switching: Based on circuit numbers
 ⇒ Indexing operation
 ⇒ Complexity O(1)
 ⇒ Fast and Scalable for large networks and large address spaces

These distinctions apply on all datalinks: ATM, Ethernet, SONET
Routing vs Switching over ATM

On ATM networks:

- IP routers use IP addresses
 ⇒ Reassemble IP datagrams from cells
- IP Switches use ATM Virtual circuit numbers
 ⇒ Switch cells
 ⇒ Do not need to reassemble IP datagrams
 ⇒ Fast
IP Switching

1. Original ATM Network

2. VCs at every hop

3. Short-circuit VCs
IP Switching

- Each ATM switch also has routing s/w
- Normally the packets are reassembled and forwarded in the router. Segmentation and reassembly in the forwarder.
- If a flow is deemed to be "flow oriented", previous node is told to set up a new VC. Forwarder uses cached info.
- Downstream nodes may also ask for a new VC. The switch then makes a mapping for cut-through
- Flow-oriented traffic: FTP, Telnet, HTTP, Multimedia
IP Switching (Cont)

- Short-lived Traffic: DNS query, SMTP, NTP, SNMP, request-response
- Ipsilon claims that 80% of packets and 90% of bytes are flow-oriented.
- Ipsilon Flow Management Protocol (IFMP)
- IP switching implemented as a s/w layer over an ATM switch
- Ipsilon claims their Generic Switch Management Protocol (GSMP) to be 2000 lines, and Ipsilon Flow Management Protocol (IFMP) to be only 10,000 lines of code
IP Switching: Steps 1-2

1st hop labeled

Default
IP Switching: Steps 3, 4

Node

ATM Switch

Packet Forwarder

2nd hop labeled

IP Switch

Node

Cut-through Complete

Node

ATM Switch

Packet Forwarder

IP Switch

Node
Ipsilon's IP Switching: Issues

- VCI field is used as ID.
 VPI/VCI change at switch
 ⇒ Must run on every ATM switch
 ⇒ non-IP switches not allowed between IP switches
 ⇒ Subnets limited to one switch

- Cannot support VLANs

- Scalability: Number of VC ≥ Number of flows.
 ⇒ VC Explosion (1000 setups/sec.)

- Quality of service determined implicitly by the flow class or by RSVP

- ATM only
Other Competing Approaches

- Cisco: Tag Switching
- IBM: Aggregate Route Based IP Switching (ARIS)
- Toshiba: Cell-switched router
- Cabletron: Secure Fast Virtual Network
- 3Com: Fast IP
- Cascade: IP Navigator
- Bay Networks: Switch Node (packet-by-packet)

⇒ IETF: Multiprotocol label switching
Label Switching

- Label = Circuit number = VC Id
- Ingress router/host puts a label. Exit router strips it off.
- Switches switch packets based on labels. Do not need to look inside ⇒ Fast.
Label Switching (Cont)

- Labels have local significance
- Labels are changed at every hop

<table>
<thead>
<tr>
<th>Input Port</th>
<th>Input Label</th>
<th>Adr Prefix</th>
<th>Output Port</th>
<th>Output Label</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>164.107.61.*</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>128.146..</td>
<td>1</td>
<td>3</td>
</tr>
</tbody>
</table>
MPLS

- Multiprotocol Label Switching
- IETF working group to develop switched IP forwarding
- Initially focused on IPv4 and IPv6.
 Technology extendible to other L3 protocols.
- Not specific to ATM. ATM or LANs.
- Not specific to a routing protocol (OSPF, RIP, ...)
MPLS Terminology

- Label = Short fixed length, physically contiguous, locally significant
- Label Switching Router (LSR): Routers that use labels
- Forwarding Equivalence Class (FEC): Same Path + treatment ⇒ Same Label
- MPLS Domain: Contiguous set of MPLS nodes in one Administrative domain
- MPLS edge node = Egress or ingress node
- Label distribution protocol ≅ Routing protocols
Label Stacks

- A MPLS packet may have multiple labels
- Labels are pushed/popped as they enter/leave MPLS domain
- Stack allows hierarchy of MPLS domains
- Bottom label may indicate protocol (0=IPv4, 2=IPv6)
Label Stack Examples

1. BGP/OSPF Routing Hierarchy

```
B B BO O OB B B
```

2. VPN: Top label used in public network.
 Net A and B can use the same private addresses.

```
Private Net A

Public/ISP Net

Private Net B

Private Net A

Private Net B
```
Label Stack Entry Format

- Labels = Explicit or implicit L2 header
- TTL = Time to live
- Exp = Experimental
- SI = Stack indicator, 1 ⇒ Bottom of Stack

```
L2 Header | Label Stack Entry | Label Stack Entry...
```

```
20b 3b 1b 8b
Label Exp SI TTL
```
Label Assignment

- Unsolicited: Topology driven \Rightarrow Routing protocols exchange labels with routing information. Many existing routing protocols are being extended: BGP, OSPF

- On-Demand:
 \Rightarrow Label assigned when requested, e.g., when a packet arrives \Rightarrow latency

- A new Label Distribution Protocol called LDP is being defined.

- RSVP is being extended to allow label request and response
Label Distribution Protocol

- LDP peers: LSRs that exchange LDP messages. Using an LDP session.
- LDP messages:
 - Session establishment/termination messages
 - Discovery messages to announce LSRs (Hello)
 - Advertisement msgs to create/delete/change label
 - Notification messages for errors and advice
- Discovery messages are UDP based. All others TCP.
- Hello messages are sent on UDP port 646.
- Session establishment messages sent on TCP port 646.
- No multicast, multipath, or QoS in the first version.
LDP Messages

- Hello
- Initialization
- Label Request
- Label Mapping (Label Response)
- Label Withdraw (No longer recognized by downstream)
- Label Release (No longer needed by upstream)
- Label Abort Request
- KeepAlive
- Notification
- Address (advertise interface addresses)
- Address Withdraw
- Vendor-Private
- Experimental
LDP TLVs

- FEC (Wild card, prefix, or host address)
- Address List
- Hop Count
- Path Vector
- Generic Label
- ATM Label
- Frame Relay Label
- Status
- Extended Status
- Returned PDU
- Returned Message
- Common Hello parameters
MPLS Over ATM

- With MPLS software, ATM switches can act as LSRs.
- VPI/VCI fields are used for labels.
- No Stack bit \Rightarrow Maximum two possible levels of hierarchy: VCI, VPI
 All ATM switches should use the same encoding.
- No TTL field \Rightarrow Hops between ingress and egress can be computed during LSP setup.
 Ingress router drops if TTL $<$ hops to egress
- ATM LSRs need to participate in network layer routing protocols (OSPF, BGP)
- VPI/VCI space may be segmented for label switching and normal ATM switching
Stream Merging

- Required for egress based labels. Helpful for mpt-to-pt streams.

- In ATM/AAL5, cells of frames on the same VC cannot be intermingled \Rightarrow VCs cannot be merged.

- VC-merge: Store all cells of a frame and forward together \Rightarrow Need more buffering. Delay.

- VP Merge: VPI = Labels, VCI = source
High-Speed Backbone Alternatives

- High-speed (OC-3 and higher) ATM switches easily available. IP routers either not available or expensive.
- IP has no traffic engineering \Rightarrow Under/over-utilized links
- Logical \neq Physical \Rightarrow ATM has n^2 scaling problem
- MPLS takes the best of both IP and ATM networks
- Works on both ATM and non-ATM networks \Rightarrow Easier management
Summary

- IP Switching allows hop-by-hop switching of IP packets.
- MPLS combines the best of ATM and IP. Works on all media: ATM and non-ATM.
- Label is similar to circuit number or VC Id.
- Common routing protocols and RSVP are being extended to include label exchange. LDP is being defined.
Homework

- Read Section 20.6 of McDysan and Spohn