Traffic Shaping in ATM Networks

Raj Jain
Professor of Computer and Information Sciences

Raj Jain is now at
Washington University in Saint Louis
Jain@cse.wustl.edu
http://www.cse.wustl.edu/~jain/
Overview

- Leaky bucket
- Generic Cell Rate Algorithm
- GCRA Implementations:
 - Virtual Scheduling Algorithm
 - Leaky bucket algorithm
- Examples
Leaky Bucket

- Provides traffic shaping: Input bursty. Output rate controlled.
- Provides traffic policing: Ensure that users are sending traffic within specified limits. Excess traffic discarded or admitted with CLP = 1
Generic Cell Rate Algorithm: GCRA(I, L)

- I = Increment = Inter-cell Time = Cell size/PCR
- L = Limit ⇒ Leaky bucket of size I + L and rate 1

Last Cell Time

<table>
<thead>
<tr>
<th>Last Cell Time</th>
<th>No</th>
<th>OK</th>
<th>Yes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>I-L</td>
<td>L</td>
<td>I</td>
</tr>
</tbody>
</table>

Theoretical Arrival Time

- Time
GCRA: Virtual Scheduling Algorithm

Cell Arrival at \(t \)

- \(TAT < t? \) Late?
 - Yes (late)
 - No (early)

 - \(TAT > t + L? \)
 - Yes
 - Too early?
 - No
 - TAT = TAT + I
 - Conforming Cell
 - TAT = \(t \)

Non Conforming Cell

TAT = Theoretical Arrival Time
GCRA: Leaky Bucket Algorithm

\[F = X - (t - LCT) \]

- **Non-Conforming Cell**
 - Yes
- **F > L?**
 - No
 - Yes
 - **F = 0**

- **F < 0?**
 - Yes
 - **Non-Conforming Cell**
 - No
 - **Conforming Cell**

\[X = F + I; \ LCT = t \]

LCT = Last Compliance Time
X = Bucket contents at LCT
F = Bucket contents now

The Ohio State University
Raj Jain
\[\delta = \text{cell time} = 2.73 \mu s \text{ at 155 Mbps} \]

- **GCRA(4.5 \(\delta \), 0.5 \(\delta \)):**

- **GCRA(4.5 \(\delta \), 7 \(\delta \)):**
Maximum Burst Size

\[\delta = \text{cell time at Peak Cell Rate (PCR)}, \]
\[I = \text{cell time at Sustained Cell Rate (SCR)}, \ L = \text{Limit} \]
\[N = \text{Maximum burst size (MBS)} \]

\[\text{GCRA}(I, L): \]

\[(N-1)\delta < L \]

\[MBS = N = \text{Int}[1 + \frac{L}{(I - \delta)}] \]

\[L = (MBS - 1)(I - \delta) \]
Summary

- Leaky bucket is used to smooth bursty arrivals
- GCRA requires increment (inter-cell arrival time) and limit (on earlyness)
- Two implementations: Virtual scheduling and leaky bucket
Homework

- Read Section 12.5.2, 22.1, 22.2.1-22.2.3 of McDysan’s book.
 Or Read pages 505-513 of Stallings’ ISDN and Broadband ISDN with Frame Relay and ATM)

- Conduct Lab exercise 1