Frame Relay Congestion Control

Raj Jain
Professor of Computer and Information Sciences

Raj Jain is now at
Washington University in Saint Louis
Jain@cse.wustl.edu
http://www.cse.wustl.edu/~jain/
Overview

- Congestion avoidance vs recovery
- Discard control
- Explicit forward/backward congestion notification
- Implicit notification
Frame Relay
Congestion Techniques

- Discard Control (DE Bit)
- Backward Explicit Congestion Notification
- Forward Explicit Congestion Notification
- Implicit congestion notification
 (sequence numbers in higher layer PDUs)
Discard Control

- Committed Information Rate (CIR)
- Committed Burst Size (B_c):
 Over measurement interval T
 \[T = \frac{B_c}{CIR} \]
- Excess Burst Size (B_e)
- Between B_c and $B_c + B_e \Rightarrow$ Mark DE bit
- Over $B_e \Rightarrow$ Discard
Raj Jain
The Ohio State University

Bits

$B_c + B_e$

B_c

Access rate

CIR

Discard

T_0

$T_0 + T$

DE = 1

DE = 0

Frames

1

2

3

All frames with CIR

The Ohio State University

Raj Jain

5
One Frame marked DE

Frames 1 2 3 4

Time

CIR

Access rate

Discard

$B_c + B_e$

B_c

T_0

$T_0 + T$

DE = 1

DE = 0

CIR
One Frame marked DE; one frame discarded.
Leaky Bucket Algorithm

Let C be the counter; increment with incoming data

Decrement C by $\min\{C, B_c\}$ every T Time units

Limit C to $B_c + B_e$

Discard any incoming data while C is at its threshold

$C = \text{counter}$;
increment with incoming data

CIR = B_c / T
- Forward Explicit Congestion Notification
- Source sets FECN = 0
- Networks set FECN if avg Q > 1
- Dest tells source to inc/dec the rate (or window)
- Start with R = CIR (or W=1)
- If more than 50% bits set
 ⇒ decrease to 0.875 × R (or 0.875W)
- If less than 50% bits set
 ⇒ increase to 1.0625 × R (or min{W+1, Wmax})
- If idle for a long time, reset R = CIR (or W=1)
Backward Explicit Congestion Notification

- Set BECN bit in reverse traffic or send Consolidated Link-Layer Management (CLLM) message to source
- On first BECN bit: Set \(R = CIR \)
- On further "S" BECNs: \(R = 0.675 \times CIR, 0.5 \times CIR, 0.25 \times CIR \)
- On \(S/2 \) BECNs clear: Slowly increase \(R = 1.125 \times R \)
- If idle for long, \(R = CIR \)
BECN (Cont.)

- For window based control:
 - $S = \text{One frame interval}$
 - Start with $W=1$
 - First BECN $W = \max(0.625W, 1)$
 - Next S BECNs $W = \max(0.625W, 1)$
 - $S/2$ clear BECNs $\Rightarrow W = \min(W+1, W_{\text{max}})$

- CLLM used if no reverse traffic

- CLLM = XID message on maintenance
 - DLCI = 1007 (decimal)

- CLLM contains a list of congested DLCIs
Implicit Congestion Control

- Decrease window on frame loss
- Increase window slowly
- Decrease by 1, Decrease to Wmin, Decrease by a factor α
- Increase by 1 after N frames
- Increase by 1 after W frames
Summary

- Discard strategy: Leaky bucket
- Forward explicit congestion notification
- Backward Explicit congestion notification
- Implicit congestion control