TCP/IP Protocol Suite and Internetworking

Raj Jain
Professor of CIS

Raj Jain is now at
Washington University in Saint Louis
Jain@cse.wustl.edu
http://www.cse.wustl.edu/~jain/
Overview

- Key Philosophical Differences from OSI
- Layering vs Hierarchy
- Protocol architecture and interfaces
- Internetworking terms and services
- Internet Protocol (IP): Services, Header, Address format
Key Differences From OSI

- Connectionless Service: TCP/IP is pro-connectionless
- Simple Management
- Hierarchy vs layering
- Internetworking: Not in original OSI
Layering

- Each layer has to perform a set of functions
- All alternatives for a row have the same interfaces
- Choice at each layer is independent of other layers.
- Need one component of each layer
 ⇒ Null components
- Nth layer control info is passed as N-1th layer data.

<table>
<thead>
<tr>
<th>TP4</th>
<th>CONS</th>
<th>CLNS</th>
</tr>
</thead>
<tbody>
<tr>
<td>802.3</td>
<td>802.5</td>
<td></td>
</tr>
<tr>
<td>LLC 1</td>
<td>LLC 2</td>
<td></td>
</tr>
<tr>
<td>Physical</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Same Interfaces
Hierarchy

- Can directly use the services of a lower entity even if it is not in an adjacent layer.

- Control and data can be separate connections. Control connections may have different reliability requirements than data.

- Lower layer control information can be used for higher layer control, e.g., lower layer close may close all higher layers.
TCP/IP Protocols

- Network access layer: Ethernet, Token Ring
- Internet layer: IP
- Host-host layer: TCP, UDP
- Process/application layer: FTP, Telnet, Mail (SMTP)

![Protocol Stack Diagram](image)

Fig 15.12
Internetworking Terms

- End-system: Host
- Network: Provides data transfer between end-systems
- Internet: A collection of networks
- Subnetwork: Each component of an internet
- Intermediate System: Connects two subnetworks
- Port: Application processes in the host
PDU’s in TCP/IP

- TCP PDU = Segment
- IP PDU = Datagram
- Datalink PDU = Frame
Operation of TCP/IP

- Process address within a host = Port
- Host address on a network
- IP deals only with host addresses = Subnet + Host #
- Application messages are broken into TCP segments
- TCP
 - Uses segment sequence number for ordering and lost segment detection
 - Uses checksum for error detection
 - Passes the segment to IP for transmission
 - Delivers the data to appropriate port in the destination host
TCP/IP Applications

- Simple Mail Transfer Protocol (SMTP):
 - Mail transfer between hosts
 - Mailing lists, mail forwarding, return receipts
 - Does not specify how to create messages

- File transfer protocols (FTP):
 - Transfers files between hosts
 - Provides access control (user name and password)
 - Binary or text files are supported.

- Remote login (Telnet):
 - Initially designed for simple scroll-mode terminals
Internet Protocol (IP)

- IP deals with only with host addresses

- Services:
 - Send: User to IP
 - Deliver: IP to User
 - Error (optional): IP to User
<table>
<thead>
<tr>
<th>Field</th>
<th>Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ver</td>
<td>4b</td>
</tr>
<tr>
<td>IHL</td>
<td>4b</td>
</tr>
<tr>
<td>ToS</td>
<td>8b</td>
</tr>
<tr>
<td>Total Length</td>
<td>16b</td>
</tr>
<tr>
<td>Id</td>
<td></td>
</tr>
<tr>
<td>Flags</td>
<td></td>
</tr>
<tr>
<td>Fragment Offset</td>
<td></td>
</tr>
<tr>
<td>TTL</td>
<td></td>
</tr>
<tr>
<td>Protocol</td>
<td></td>
</tr>
<tr>
<td>Header Checksum</td>
<td></td>
</tr>
<tr>
<td>Source Address</td>
<td></td>
</tr>
<tr>
<td>Destination Address</td>
<td></td>
</tr>
<tr>
<td>Options + Padding</td>
<td></td>
</tr>
</tbody>
</table>

20B

3b

Fig 16.7
Version (4 bits)

Internet header length (4 bits): in 32-bit words. Min header is 5 words or 20 bytes.

Type of service (8 bits): Reliability, precedence, delay, and throughput

Total length (16 bits): header+data in bytes

Identifier (16 bits): Helps uniquely identify the datagram during its life for a given source, destination address
IP Header (Cont)

- Flags (3 bits):
 - More flag - used for fragmentation
 - No-fragmentation
 - Reserved

- Fragment offset (13 bits): In units of 8 bytes

- Time to live (8 bits): Specified in router hops

- Protocol (8 bits): Next level protocol to receive the data

- Header checksum (16 bits): 1’s complement sum of all 16-bit words in the header
IP Header (Cont)

- Source Address (32 bits)
- Destination Address (32 bits)
- Options (variable): Security, source route, record route, stream id (used for voice) for reserved resources, timestamp recording
- Padding (variable):
 Makes header length a multiple of 4
- Data (variable): Data + header ≤ 65,535 bytes
IP Address

- **Class A:**
 - Network: 0
 - Subnet: 1
 - Host: 7
 - Total bits: 24

- **Class B:**
 - Network: 10
 - Subnet: 2
 - Host: 14
 - Total bits: 16

- **Class C:**
 - Network: 110
 - Subnet: 3
 - Host: 21
 - Total bits: 8

- **Class D:**
 - Network: 1110
 - Host Group (Multicast)
 - Total bits: 28

- **Local = Subnet + Host (Variable length)**
Address Resolution Protocol

- Problem: Given an IP address find the MAC address
- Solution: Address resolution protocol
- The host broadcasts a request:
 “What is the MAC address of 127.123.115.08?”
- The host whose IP address is 127.123.115.08 replies back:
 “The MAC address for 127.123.115.08 is 8A-5F-3C-23-45-5616”
- A router may act as a proxy for many IP addresses
Internet Control Message Protocol (ICMP)

- Required companion to IP. Provides feedback from the network.
 - Destination unreachable
 - Time exceeded
 - Parameter problem
 - Source quench
 - Redirect
 - Echo
 - Echo reply
 - Timestamp
 - Timestamp reply
 - Information Request
 - Information reply
Autonomous Systems

- An internet connected by homogeneous routers under the administrative control of a single entity

Fig 16.10
Other Networking Protocols

- Interior Router Protocol (IRP): Used for passing routing information among routers internal to an autonomous system
- Exterior Router Protocol (ERP): Used for passing routing information among routers between autonomous systems
Networking Protocols (Cont)

- Open Shortest Path First (OSPF): Interior routing protocol.
 Provides least-cost path routes using a fully user configurable routing metric (any fn of delay, data rate, dollar cost, etc.)
 Link costs flooded (Link-state routing)

- Exterior Gateway Protocol (EGP): Periodic hellos and responses with cost to other networks
Summary

- TCP/IP’s hierarchy vs OSI’s layering
- Processes, hosts, networks, ports, subnetwork
- IP: Address, header
- ARP, ICMP, EGP, OSPF
Homework

- Read Section 15.3 of Stallings’ sixth edition
- Submit answers to Exercises 15.8, 15.9