- Routing algorithms
 - Dijkstra’s Algorithm
 - Bellman-Ford Algorithm
- ARPAnet routing
Rooting or Routing

- **Rooting** is what fans do at football games, what pics do for truffles under oak trees in the Vaucluse, and what nursery workers intent on propagation do to cuttings from plants.

- **Routing** is how one creates a beveled edge on a table top or sends a corps of infantrymen into full scale, disorganized retreat

Ref: Piscitello and Chapin, p413
Routeing or Routing

- Routeing: British
- Routing: American
- Since Oxford English Dictionary is much heavier than any other dictionary of American English, British English generally prevails in the documents produced by ISO and CCITT; wherefore, most of the international standards for routing standards use the routeing spelling.

Ref: Piscitello and Chapin, p413
Routing Techniques Elements

- **Performance criterion:** Hops, Distance, Speed, Delay, Cost
- **Decision time:** Packet, session
- **Decision place:** Distributed, centralized, Source
- **Network information source:** None, local, adjacent nodes, nodes along route, all nodes
- **Routing strategy:** Fixed, adaptive, random, flooding
- **Adaptive routing update time:** Continuous, periodic, topology change, major load change
Distance Vector vs Link State

- **Distance Vector**: Each router sends a vector of distances to its neighbors. The vector contains distances to all nodes in the network. Older method. Count to infinity problem.

- **Link State**: Each router sends a vector of distances to all nodes. The vector contains only distances to neighbors. Newer method. Used currently in internet.
Dijkstra’s Algorithm

- Goal: Find the least cost paths from a given node to all other nodes in the network

- Notation:
 - d_{ij} = Link cost from i to j if i and j are connected
 - D_n = Total path cost from s to n
 - M = Set of nodes so far for which the least cost path is known

- Method:
 - Initialize: $M=\{s\}$, $D_n = d_{sn}$
 - Find node $w \notin M$, whose D_n is minimum
 - Update D_n
Example

1. $D_2 = 2$
2. $D_3 = 5$
3. $D_4 = 1$
$M = \{1\}$

5. $D_2 = 2$
6. $D_3 = 4$
$M = \{1, 4\}$

4. $D_4 = 1$
5. $D_5 = 2$

$M = \{1, 2, 4\}$

2. $D_2 = 2$
3. $D_3 = 3$
$D_6 = 4$

4. $D_4 = 1$
5. $D_5 = 2$
$M = \{1, 2, 4, 5\}$
Example (Cont)

<table>
<thead>
<tr>
<th>M</th>
<th>D2 Path</th>
<th>D3 Path</th>
<th>D4 Path</th>
<th>D5 Path</th>
<th>D6 Path</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 {1}</td>
<td>2 1-2</td>
<td>5 1-3</td>
<td>1 1-4</td>
<td>∞</td>
<td>-</td>
</tr>
<tr>
<td>2 {1,4}</td>
<td>2 1-2</td>
<td>4 1-4-3</td>
<td>1 1-4</td>
<td>2</td>
<td>1-4-5</td>
</tr>
<tr>
<td>3 {1,2,4}</td>
<td>2 1-2</td>
<td>4 1-4-3</td>
<td>1 1-4</td>
<td>2</td>
<td>1-4-5</td>
</tr>
<tr>
<td>4 {1,2,4,5}</td>
<td>2 1-2</td>
<td>3 1-4-5-3</td>
<td>1 1-4</td>
<td>2</td>
<td>1-4-5</td>
</tr>
<tr>
<td>5 {1,2,3,4,5}</td>
<td>2 1-2</td>
<td>3 1-4-5-3</td>
<td>1 1-4</td>
<td>2</td>
<td>1-4-5</td>
</tr>
<tr>
<td>6 {1,2,3,4,5,6}</td>
<td>2 1-2</td>
<td>3 1-4-5-3</td>
<td>1 1-4</td>
<td>2</td>
<td>1-4-5</td>
</tr>
</tbody>
</table>
Dijkstra's Routing Algorithm

- Apply to the following network and compute paths from node 1.

![Network Diagram]

<table>
<thead>
<tr>
<th></th>
<th>M</th>
<th>D2 Path</th>
<th>D3 Path</th>
<th>D4 Path</th>
<th>D5 Path</th>
<th>D6 Path</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Dijkstra's routing algorithm

Apply to the following network and compute paths from node 1.

![Network Diagram]

<table>
<thead>
<tr>
<th></th>
<th>M</th>
<th>D2</th>
<th>Path</th>
<th>D3</th>
<th>Path</th>
<th>D4</th>
<th>Path</th>
<th>D5</th>
<th>Path</th>
<th>D6</th>
<th>Path</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>{1}</td>
<td>1</td>
<td>1-2</td>
<td>∞</td>
<td>-</td>
<td>4</td>
<td>1-4</td>
<td>∞</td>
<td>-</td>
<td>∞</td>
<td>-</td>
</tr>
<tr>
<td>2</td>
<td>{1,2}</td>
<td>1</td>
<td>1-2</td>
<td>4</td>
<td>1-2-3</td>
<td>4</td>
<td>1-4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>{1,2,3}</td>
<td>1</td>
<td>1-2</td>
<td>4</td>
<td>1-2-3</td>
<td>4</td>
<td>1-4</td>
<td>2</td>
<td>1-2-5</td>
<td>6</td>
<td>1-2-3-6</td>
</tr>
<tr>
<td>4</td>
<td>{1,2,3,5}</td>
<td>1</td>
<td>1-2</td>
<td>4</td>
<td>1-2-3</td>
<td>3</td>
<td>1-2-5-1</td>
<td>2</td>
<td>1-2-5</td>
<td>6</td>
<td>1-2-3-6</td>
</tr>
<tr>
<td>5</td>
<td>{1,2,3,4,5}</td>
<td>1</td>
<td>1-2</td>
<td>4</td>
<td>1-2-3</td>
<td>3</td>
<td>1-2-5-1</td>
<td>2</td>
<td>1-2-5</td>
<td>6</td>
<td>1-2-3-6</td>
</tr>
<tr>
<td>6</td>
<td>{1,2,3,4,5,6}</td>
<td>1</td>
<td>1-2</td>
<td>4</td>
<td>1-2-3</td>
<td>3</td>
<td>1-2-5-1</td>
<td>2</td>
<td>1-2-5</td>
<td>6</td>
<td>1-2-3-6</td>
</tr>
</tbody>
</table>
Bellman-Ford Algorithm

- **Notation:**
 - \(h \) = Number of hops being considered
 - \(D^{(h)}_n \) = Cost of \(h \)-hop path from \(s \) to \(n \)

- **Method:**
 - Find all nodes 1 hop away
 - Find all nodes 2 hops away
 - Find all nodes 3 hops away

- **Initialize:**
 - \(D^{(h)}_n = \infty \) for all \(n \neq s \);
 - \(D^{(h)}_n = 0 \) for all \(h \)

- **Find jth node for which \(h+1 \) hops cost is minimum**
 - \(D^{(h+1)}_n = \min_j [D^{(h)}_j + d_{jn}] \)
Example

Fig 9.23b Raj Jain
Example (Cont)

<table>
<thead>
<tr>
<th>h</th>
<th>$D(h_2)$</th>
<th>Path</th>
<th>$D(h_3)$</th>
<th>Path</th>
<th>$D(h_4)$</th>
<th>Path</th>
<th>$D(h_5)$ Path</th>
<th>$D(h_6)$</th>
<th>Path</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>∞</td>
<td>-</td>
<td>∞</td>
<td>-</td>
<td>∞</td>
<td>-</td>
<td>∞</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>1-2</td>
<td>5</td>
<td>1-3</td>
<td>1</td>
<td>1-4</td>
<td>∞</td>
<td>-</td>
<td>∞</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>1-2</td>
<td>4</td>
<td>1-4-3</td>
<td>1</td>
<td>1-4</td>
<td>2</td>
<td>1-4-5</td>
<td>10</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>1-2</td>
<td>3</td>
<td>1-4-5-3</td>
<td>1</td>
<td>1-4</td>
<td>2</td>
<td>1-4-5</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>1-2</td>
<td>3</td>
<td>1-4-5-3</td>
<td>1</td>
<td>1-4</td>
<td>2</td>
<td>1-4-5</td>
<td>4</td>
</tr>
</tbody>
</table>
Flooding

Fig 8.11b
Flooding

- Uses all possible paths
- Uses minimum hop path
 Used for source routing

Fig 9.7
ARPAnet Routing (1969-78)

- Features: Cost=Queue length,
- Each node sends a vector of costs (to all nodes) to neighbors. Distance vector.
- Each node computes new cost vectors based on the new info using Bellman-Ford algorithm.
ARPAnet Routing Algorithm

(a) Node 1's routing table before update

(b) Delay vectors sent to neighbor nodes

(c) Node 1's routing table after update and link costs

Fig 9.9

The Ohio State University

Raj Jain

5-19
ARPAnet Routing (1979-86)

- Problem with earlier algorithm: Thrashing (packets went to areas of low queue length rather than the destination), Speed not considered
- Solution: Cost=Measured delay over 10 seconds
- Each node floods a vector of cost to neighbors. Link-state. Converges faster after topology changes.
- Each node computes new cost vectors based on the new info using Dijkstra’s algorithm.

Fig 9.10
Problem with 2nd Method: Correlation between delays reported and those experienced later: High in light loads, low during heavy loads
⇒ Oscillations under heavy loads
⇒ Unused capacity at some links, over-utilization of others, More variance in delay more frequent updates
More overhead

Fig 9.11
Routing Algorithm

- Delay is averaged over 10 s
- Link utilization = \(r = \frac{2(s-t)}{s-2t} \)
 where \(t \) = measured delay,
 \(s \) = service time per packet (600 bit times)
- Exponentially weighted average utilization
 \(U(n+1) = \alpha U(n) + (1-\alpha)r(n+1) \)
 \(= 0.5 U(n) + 0.5 r(n+1) \) with \(\alpha = 0.5 \)
- Link cost = \(f_n(U) \)

Fig 9.12
Summary

- Distance Vector and Link State
- Routing: Least-cost, Flooding, Adaptive
- Dijkstra’s and Bellman-Ford algorithms
- ARPAnet
Homework

- Read Sections 10.1, 10.2, and Appendix 10A of Stallings’ sixth edition.
- Submit answer to Exercise 10.4 (in b assume a unidirectional single loop), 10.10, and 10.16
- Due: Next class