Simulation Results for VBR+ABR Traffic

Raj Jain, Shiv Kalyanaraman, Rohit Goyal
Department of CIS

Raj Jain is now at
Washington University in Saint Louis
Jain@cse.wustl.edu
http://www.cse.wustl.edu/~jain/
Overview

- Effect of VBR
- VBR Model
- ERICA
- Simulation Results
ERICA

- ERICA = Explicit Rate Indication for Congestion Avoidance
- ERICA is the switch algorithm part of EPRCA++ presented in the November’94 meeting.
- Fully compatible with source/switch/destination behaviors as agreed in the November’94, February’95, and April’95 meetings.
- Fully compatible with current RM Cell format. No new bits, no new fields
ABR-Only Systems

- Most simulations have assumed
 - Infinite sources
 - ABR only

- With ABR only:
 - Link capacity is known
 - Link capacity is fixed
 - Only traffic is random
 - Only traffic has to be measured, predicted, and allocated fairly
VBR+ABR Systems

- VBR gets a preferential treatment
- ABR gets only left-overs
- ABR capacity is a random variable
 It has to be measured, forecasted, and allocated
- Sometimes, there may not be any left-overs
- Sometimes, even VBR may be overbooked
A Simple VBR Model

- On for x ms and off for y ms
- When on, VBR uses up C_{vbr} bandwidth
- In practice, x, y, C_{vbr} are random variables. We assumed constants.

$$C_{vbr}$$

1

$y x y x y x y x$

Time

$$C_{abr}$$

1

$y x y x y x y x$

Time
Simulation Parameters

- **Source:**
 - Nrm = 16
 - ICR = PCR/20 or PCR
 - AIR = PCR
 - RDF = ∞

- **Switch:**
 - Target Utilization = 90%
 - Averaging interval = 30 cells
 - Uses BECN option during first round-trip on WAN

- **Traffic:** $C_{vbr} = 80\%$
 - $x = y = 2$ ms (LAN)
 - $x = y = \text{max round trip (WAN)}$
Two-Source Configuration

- All links 155 Mbps
- Goal: To check efficiency and fairness in the presence of VBR
Parking Lot Configuration

- All links 155.52 Mbps, 1 km (LAN) or 1000 km (WAN)
- Goal: Test fairness in the presence of VBR
Simulation Results

- ERICA converges fast
- ABR uses up all the left-over capacity
- ABR comes down fast during VBR-on periods
- ABR comes up fast during VBR-off periods
- Link is not underutilized
- Queues are small
Summary

- Switch schemes that work with ABR-only may or may not work with VBR+ABR
- With VBR+ABR:
 - ERICA converges fast
 - ABR comes down/up very fast filling up all left-over capacity
 - Queues are small