97-0612
Revised MIMO Definition

Gojko Babic, Arjan Durresi, Raj Jain, Justin Dolske

Raj Jain is now at
Washington University in Saint Louis
Jain@cse.wustl.edu
http://www.cse.wustl.edu/~jain/
Frame Latency

- MIMO = FILO - NFOT
- NFOT = Normalized Frame Output Time
- Old Definition:
 \[NFOT = \text{Frame input time} \times \frac{\text{Output rate}}{\text{Input Rate}} \]
- New Definition:
 \[NFOT = \text{FILO latency through a zero-delay switch} \]
- Initially \(NFOT = 0 \) and time \(t \) is measured from the arrival of the first bit of the first cell.
- For each cell with its first bit arriving at time \(t \)
 \[NFOT = \max\{t, NFOT\} + CT. \]
- \(CT = \text{Max}\{\text{Cell input time, Cell output time}\} \)
Example 1

- Input rate > Output rate
- CT = Cell Output Time = 4
- 2nd cell at 5: NFOT = max{5, 4} + 4 = 9

First bit of cell arrives
Example 2

- Input rate > Output rate
- $CT = \text{Max}\{1, 4\} = 4$
- 2nd Cell arrival at 2: $\text{NFOT} = \text{max}\{2, 4\} + 4 = 8$

First bit of cell arrives

First bit of cell transmitted
Example 3

- Input rate < Output rate

First bit of cell arrives

First bit of cell transmitted

First bit of cell arrives

First bit of cell transmitted

The Ohio State University

Raj Jain
Revised MIMO Latency

- MIMO Latency = \(\text{FILO Latency} - \text{NFOT} \)
- \(\text{FILO latency} \) = Time between the first bit entry and the last bit exit
- \(\text{NFOT} \) = Nominal Frame Output Time: the time a frame needs to pass through the zero-delay switch, calculated as:
 Initially \(\text{NFOT} = 0 \) and time \(t \) is measured from the arrival of the first bit of the first cell. For each cell with its first bit arriving at time \(t \)
 \(\Rightarrow \text{NFOT} = \max\{t, \text{NFOT}\} + \text{CT} \).
- \(\text{CT} \) = Max \{cell input, cell output time\}
Key Difference

- Zero-Delay Switch:
 - (a) Ours
 - (b) Theirs

- Calling “b” a zero-delay switch will make better switches negative delay switches.
7. Wire

1 m long wire, 64 kbps

- Ours: 5 µs
- Theirs: -6.630 ms
6. Cut-Through Switches

- Cut Through = A switch that looks at the 5-byte header and starts switching.
- At 64 kbps: 5 B = 0.625 ms, 53 B = 6.625 ms

Our: 0.625 ms
Their: -6 ms
5. Repeaters

Our: 0 ms
Their: - 6.625 ms
4. Multiplexers

Our: 0 ms
Their: - 6.625 ms
If their definition does not apply to multiplexers or wires, it will not apply to networks that have only these.
2. Frame Switches

- They define all 1-cell delay switches as zero-delay switches.
- Are all 1-frame delay switches also zero-delay switches?
- If yes, then what about cut-through frame switches? Most frame switches now a days uqe cut-through and will have negative delay by their definition.
- Their definition does not extend to frame (non-cell) switches.
- Why apply a definition that does not apply to other units of information?
1. No Negative Delay

- If you use our definition, no switch can have negative delay.
- If you use their definition, all our zero delay switches have negative delays by their definition.
- All our zero-delay switches are feasible.
Motion

- Adopt the text under heading “Proposed Revised Text for Section 3.2.1” of 97-0612 to replace section 3.2.1 of Performance Testing Baseline Text.