
CSE 515T (Spring 2017) Assignment 2
Due Tuesday, 21 March 2017

1. (Curse of dimensionality.) Consider a d-dimensional, zero-mean, spherical multivariate

Gaussian distribution:

p(x) = N (x; 0, Id).

Equivalently, each entry of x is drawn iid from a univariate standard normal distribution.

In familiar small dimensions (d ≤ 3), “most” of the vectors drawn from a multivariate

Gaussian distribution will lie near the mean. For example, the famous 68–95–99.7 rule for

d = 1 indicates that large deviations from the mean are unusual. Here we will consider the

behavior in larger dimensions.

• Draw 10 000 samples from p(x) for each dimension in d ∈ {1, 5, 10, 50, 100}, and

compute the length of each vector drawn: yd =
√

x>x = (
∑d
i x

2
i )

1/2
. Estimate the

distribution of each yd using either a histogram or a kernel density estimate (in matlab,

hist and ksdensity, respectively). Plot your estimates. (Please do not hand in your

raw samples!) Summarize the behavior of this distribution as d increases.

• The true distribution of y2d is a chi-square distribution with d degrees of freedom (the

distribution of yd itself is the less-commonly seen chi distribution). Use this fact to

compute the probability that yd < 5 for each of the dimensions in the last part.

• For d = 1 000, compute the 5th and 95th percentiles of yd. Is the mean x = 0 a

representative summary of the distribution in high dimensions? This behavior has been

called “the curse of dimensionality.”

2. (Bayesian linear regression.) Consider the following data:

x = [−1.11,−0.85,−0.76,−0.65,−0.57,−0.56,−0.20, 0.18, 0.59, 1.18]>;

y = [1.24, 0.62, 0.14, 0.08,−0.23,−0.22,−1.09,−1.03,−0.35, 5.04]>.

Fix the noise variance at σ2 = 0.12.

• Perform Bayesian linear regression for these data using the polynomial basis functions

φk(x) = [1, x, x2, . . . xk]> for k ∈ {1, 2, 3}, in each case using the parameter prior

p(w) = N (w; 0, I). Evaluate and plot the posterior means E[y∗ | X∗,D, σ2] on the

interval x∗ ∈ [−4, 4] for each model. Also plot the posterior mean plus-or-minus two

times the posterior standard deviation:

E[y∗ | X∗,D, σ2]± 2
√

var[y∗ | X∗,D, σ2].

This is a pointwise 95% credible interval for the regression function. Where is the

pointwise uncertainty the largest?

• Compute the marginal likelihood of the data for each of the basis expansions above:

p(y | X, k, σ2). Which model explains the data the best?

3. (Optimal design for Bayesian linear regression.) Consider the data from the last problem, and

suppose we have selected the quadratic model corresponding to k = 3 (do not assume that

this is the answer to the last part of the last question). Imagine we are allowed to evaluate
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the function at a point x′ of our choosing, giving a new dataset D′ = D ∪
{

(x′, y′)
}

and a

new posterior for the parameters p(w | D′, σ2) = N (w;µw|D′ ,Σw|D′). We hope to select

the location x′ to best improve our current model, under some quality measure.

Assume that we ultimately wish to predict the function at a grid of points

x∗ = [−4,−3.5,−3, . . . , 3.5, 4]>.

We select the squared loss for a set of predictions ŷ∗ at these points:

`(y∗, ŷ∗) =
∑
i

(
(y∗)i − (ŷ∗)i

)2
;

therefore, we will predict using the new posterior mean ŷ∗ = X∗µw|D′ .

• Given a potential observation location x′, derive a closed-form expression for the

expected loss E
[
`(y∗, ŷ∗) | x′,D

]
. Note: this does not require integration over y′!

(What is the expected squared deviation from the mean?)

• Plot the expected loss over the interval x′ ∈ [−4, 4]. Where is the optimal location to

sample the function?

Note: this approach of actively selecting where to sample a function to maximize some utility

function is known as active learning in machine learning and optimal experimental design
in statistics. Bayesian decision theory provides a convenient and consistent framework for

performing active learning with a variety of objectives.

4. Perform a Gaussian process regression using the same data and observation model as above,

using the squared exponential kernel

K(x, x′) = exp

(
− (x− x′)2

2

)
.

Plot the mean and 95% credible interval as before. Find the marginal likelihood. How does

this model compare with the polynomial models?

Compare the behavior of the model when extrapolating. How is it di�erent qualitatively?

Can you explain the di�erences?

5. (Laplace approximation.) Find a Laplace approximation to the gamma distribution:

p(θ | α, β) =
1

Z
θα−1 exp(−βθ).

Plot the approximation against the true density for (α, β) = (3, 1).

The true value of the normalizing constant is

Z =
Γ(α)

βα
.

If we �x β = 1, then Z = Γ(α), so we may use the Laplace approximation to estimate the

Gamma function. Analyze the quality of this approximation as a function of α.
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