
Linear regression
We are ready to consider our first machine-learning problem: linear regression. Suppose that we
are interested in the values of a function y(x) : Rd → R, where x is a d-dimensional vector-valued

input. We assume that we have made some observations of this mapping, D =
{
(xi, yi)

}N
i=1

, to

serve as training data. Given these examples, the goal of regression is to be able to predict the value

of y at a new input location x∗. In other words, we want to learn from D a (hopefully accurate!)

prediction function (also called a regression function) ŷ(x∗).

Without any further restrictions on ŷ, the problem is not well-posed. In general, I could choose any

function ŷ. How do I choose a good function? In particular, how do I effectively use the training

observations D to guide this choice?

The space of all possible regression functions ŷ is enormous; to restrict this space and make learning

more tractable, linear regression assumes the relationship between x and y is “mostly” linear:

y(x) = x⊤w + ε(x), (1)

where w ∈ Rd
is a vector of parameters, and ε(x) represents a departure from the underlying

linear function x⊤w at x. The value of ε(x) is also called the residual. If the underlying linear trend
closely matches the data, we can expect small residuals.

Note that this model does not explicitly contain an intercept term. Instead, we normally add a

constant feature to the input vector x as in x′ = [1,x]⊤. In this case, the value w1 may be seen

as an intercept term, allowing the hyperplane to avoid passing through the origin at x = 0. To
avoid messy notation, we will not explicitly write the prime on the inputs and rather assume this

expansion has already been done.

In general, we can imagine applying any function to x to serve as the inputs to our linear regression

model. For example, to accomplish polynomial regression of a given degree k, we might take

x′ = [1,x,x2, . . . ,xk]⊤, where exponentiation is pointwise. A transformation of this type may

be summarized by a map x 7→ ϕ(x); this is known as a basis expansion. With a nonlinear basis

expansion, we can learn nonlinear regression functions. We assume in the following that such an

expansion, if desired, has already been applied to the inputs.

Let us collect the N training examples into a matrix of training inputs X ∈ RN×d
and a vector

of associated outputs y ∈ RN
. Then our assumed linear relationship in (1), when applied to the

training data, may be written

y = Xw + ε,

where we have also collected the residuals into the vector ε.

There are many classical approaches for estimating the parameter vector w; below, we describe

two.

Ordinary least squares

As mentioned previously, a “good” linear mapping x⊤w should result in small residuals. Our goal

is to minimize the magnitude of the residuals at every possible test input x∗. Of course, this is

impossible, so we settle for the next best thing: we minimize the magnitude of the residuals on our

training data.

The classical approach is to estimate w by minimizing the sum of the squared residuals on the

1

training data:

ŵ = argmin
w

N∑
i=1

(x⊤
i w − yi)

2. (2)

This approach is called ordinary least squares. The underlying assumption is that the magnitude

of the residuals are all independent from each other, so that we can simply sum up the squared

residuals and minimize. (If the residuals were instead correlated, we would have to consider the

interaction between pairs of residuals. This is also possible and gives rise to generalized least
squares.)

It turns out that the minimization problem in (2) has an exact, closed-form solution:

ŵ = (X⊤X)−1X⊤y.

To predict the value of y at a new input x∗, we plug our estimate of the parameter vector into (1):

ŷ(x∗) = x⊤
∗ ŵ = x⊤

∗ (X
⊤X)−1X⊤y.

Ordinary least squares is by far the most commonly applied linear regression procedure.

Ridge regression

Occasionally, the ordinary least squares approach can lead to problems. In particular, when the

training data lie extremely close to a particular hyperplane (or when the number of observations is

less than the dimension, and wemay find a hyperplane intersecting the data exactly), the magnitudes

of the estimated parameters ŵ can become ill-behaved and extremely large. This is an example of

overfitting.

A priori, we might reasonably expect or desire the values ofw to be relatively small. For this reason,

so-called penalization or regularization methodsmodify the objective in (2) to avoid such pathologies.

The most common approach is to add a term to the objective encouraging small entries of w, for

example

ŵ = argmin
w

N∑
i=1

(x⊤
i w − yi)

2 + λ∥w∥22, (3)

where we have added the squared 2-norm of w to the function to be minimized, thereby penalizing

large-magnitude entries of w. The scalar λ ≥ 0 serves to trade off the contributions of the residual

term and the penalty term, and is a parameter of the model that we may tune as desired. As λ → 0,
we recover the ordinary least squares objective.

The minimization problem in (3) may also be solved exactly, giving the slightly modified estimator

ŵ = (X⊤X+ λI)−1X⊤y.

Again, as λ → 0 (corresponding to very small penalties on the magnitude ofw entries), we see that

the resulting estimator converges to the ordinary least squares estimator. As λ → ∞ (corresponding

to very large penalties on the magnitude of w entries), the estimator converges to 0.

This approach is known as ridge regression, named for the additional term λI in the estimator, which

when viewed from “above” can whimsically be described as resembling a mountain ridge.

2

Bayesian linear regression

Here we consider a Bayesian approach to linear regression. Consider again the assumed underlying

linear relationship (1):

y(x) = x⊤w + ε(x).

Here the vectorw serves as the unknown parameter of the model, which we will reason about using

the Bayesian method. For convenience, we will select a multivariate Gaussian prior distribution on

w:

p(w | µ,Σ) = N (w;µ,Σ).

As before, we might expect a priori that the entries of w are small. Furthermore, in the absence of

any evidence otherwise, we might reason that all potential directions ofw are equally likely. These

two assumptions can be codified by choosing a multivariate Gaussian distribution for w with zero

mean and isotropic diagonal covariance s2I:

p(w | s2) = N (w;0, s2I). (4)

Given our observed data D = (X,y), we wish to form the posterior distribution p(w | D). We will

do so by deriving the joint distribution between the weight vector w and the observed vector of

values y, given the inputs X. We write again the assumed linear relationship in our training data:

y = Xw + ε.

Givenw andX, the only uncertainty in the above is the additive residuals ε. We assume that the

residuals are independent, unbiased, and tend to be “small.” We may accomplish this by modeling

each entry of ε as arising from zero-mean, independent, identically distributed Gaussian noise with

variance σ2
:

p(ε | σ2) = N (ε;0, σ2I).

Define f = Xw, and note that f is a linear transformation of the multivariate-Gaussian distributed

w; therefore, we may easily derive its distribution:

p(f | X,µ,Σ) = N (f ;Xµ,XΣX⊤).

Now the observation vector y is a sum of two independent multivariate Gaussian distributed vectors

f and ε. Therefore, we may derive its prior distribution as well:

p(y | X,µ,Σ, σ2) = N (y;Xµ,XΣX⊤ + σ2I).

Finally, we compute the covariance between y and w:

cov[y,w] = cov[Xw + ε,w] = cov[Xw,w] = X cov[w,w] = XΣ,

where we have used the linearity of covariance and the fact that the noise vector ε is independent

of w.

Now the joint distribution of w and y is multivariate Gaussian:

p

([
w
y

]
| X,µ,Σ, σ2

)
= N

([
w
y

]
;

[
µ
Xµ

]
,

[
Σ ΣX⊤

XΣ XΣX⊤ + σ2I

])
.

3

We apply the formula for conditioning multivariate Gaussians on subvectors to derive the posterior

distribution of w given the data D:

p(w | D,µ,Σ, σ2) = N (w;µw|D,Σw|D),

where

µw|D = µ+ΣX⊤(XΣX⊤ + σ2I)−1(y −Xµ);

Σw|D = Σ−ΣX⊤(XΣX⊤ + σ2I)−1XΣ.

Making predictions

Suppose we wish to use our model to predict the outputs y∗ associated with a set of inputs X∗.

Writing again y∗ = X∗w + ε, we derive:

p(y∗ | D,µ,Σ, σ2) = N (y∗;X∗µw|D,X∗Σw|DX
⊤
∗ + σ2I).

Therefore, we have a full, joint probability distribution over the outputs y∗. If we must make point

estimates, we choose a loss function for our predictions and use Bayesian decision theory. For

example, to minimize expected squared loss, we predict the posterior mean.

An equivalent way to derive this result is to use the sum rule as follows:

p(y∗ | D,µ,Σ, σ2) =

∫
p(y∗ | w, σ2)p(w | D,µ,Σ, σ2) dw

=

∫
N (y∗;X∗w, σ2I)N (w;µw|D,Σw|D) dw

= N (y∗;X∗µw|D,X∗Σw|DX
⊤
∗ + σ2I),

where we have used a slightly more general form of the convolution formula for multivariate

Gaussians. In this case, we view the prediciton process as considering the predictions wewouldmake

with every possible value of the parameters w and averaging them according to their plausibility.

Connection to ridge regression

For the simple prior (4), the posterior mean can be rewritten as:

µw|D = s2X⊤(s2XX⊤ + σ2I)−1y =

(
X⊤X+

σ2

s2
I

)−1

X⊤y,

where we have factored out the s2 in the inverse and have applied the matrix identity

(AB+ cI)−1A = A(BA+ cI)−1.

This is exactly equal to the ridge regression solution (3) with λ = σ2

s2 ! Why is this?

Consider finding themaximum a posteriori estimator ofw using the simple prior (4). Bayes’ theorem

tells us that the posterior distribution p(w | D) is proportional to the likelihood times the prior:

p(w | X,y, σ2, s2) ∝ p(y | X,w, σ2)p(w | s2).

The distribution of y given w is simple:

p(y | X,w, σ2) = N (y;Xw, σ2I) =

N∏
i=1

N (yi;x
⊤
i w, σ2).

4

Rather than maximizing the posterior directly, we may instead maximize its logarithm:

ŵmap = argmax
w

− 1

2σ2

N∑
i=1

(x⊤
i w − yi)

2 − 1

2s2

d∑
i=1

w2
i

= argmin
w

N∑
i=1

(x⊤
i w − yi)

2 +
σ2

s2
∥w∥22,

where we multiplied by−2σ2
to derive the second line. This is exactly the ridge regression objective.

Therefore ridge regression with ℓ2 regularization can be seen from the Bayesian perspective as

placing a Gaussian prior on w and finding the map estimator. In general, many regularization

methods can be interpreted as implicitly choosing a particular likelihood for the data and prior for

the parameters of a model and maximizing the posterior density. For example, ℓ1 regularization
(as seen in lasso) is equivalent to placing a Laplace distribution prior on the weight parameters,

encouraging a sparse solution.

Continuing with this argument, we can interpret the squared loss function

∑N
i=1(x

⊤w − yi)
2
as

coming from an iid Gaussian noise assumption. In general, loss functions in minimization problems

such as (3) can often be interpreted as negative log likelihoods arising from an implicit independent

noise assumption.

5

