Strongquest moving knives

$n = 3$ empty tree

1. Ref moves knife to the right
2. Each player moves his/her knife to the right

```
  X   L_i   R_i
  R   P_i
```

Strategy:

\[V_i(L_i) = V_i(R_i) \]

3. Player X calls STP, receives X
 + He/middle player's knife also cuts, producing \(Y \) and \(Z \)

\(P_i \)
Say \(P_x \) gets \(X \) as the other 2 players the one whose knife is closest to the knife gets \(Y \). The other player gets \(Z \).

We will show this is envy-free (and therefore proportional).

1) The player who stops \(P_x \) knows \(P_x \) gets \(X \) and knows the other 2 pieces are \(Y + Z \). \(P_x \) cannot envy any body - \(P_x \) knows \(X \) over \(Y + Z \).

2) The other players must think \(Y \) or \(Z \) is better than \(X \) since they did not say stop.

\(P_y \) receives \(Y \) so either \(P_y \)'s knife is left of \(P_y \)'s (c) or not (d).

![Diagram]

\(v_y(Y) = v_y(Z) \)

\(P_y \) gets \(Y \) and thinks it is bigger than \(X \).

\(P_y \) now cares.
b) Value of rest of cake

\[v_y(Y) = v_y(\{2\}) > v_y(\{X\}) \]

\[\therefore P_y \text{ cannot envy} \]

3) \(P_2 \text{ either was \textit{wiser} or not} \)

\[v_{x\{2\}}(Y) = v_{x\{2\}}(\{2\}) > v_{x\{2\}}(X) \]

\[P_2 \text{ cannot envy} \]

or

\[v_{x\{2\}}(Z) \geq v_{x\{2\}}(Y) > v_{x\{2\}}(X) \]

\[P_2 \]

\[\text{No envy!} \]