9/24

CSE 544 T prop - proportional

Exam I, Oct 8 (Monday)
open notes, closed internet. Look at * questions

So far:
* Divide & Chase, n=2
* Dubins-Spanier many knife*, prop n people
 * Austin moving knives, 2 parties decide "1/2"
 - 2 parties decide m "1/m"
 - 2 parties divide cake into m "equal" pieces

* Branch-Knaster trimming *
 Fink's line chooser
 - n parties, dynamic
 Woodall's strongly prop, n=2
 Steinhaus-Kuhn lone divider prop n=3
 Conway-Guy-Selﬁdge, n=3 envy-free

Fink line chooser:

\[\begin{array}{c}
\text{cake divided} \\
\text{new person joins,}
\text{redistribute the cake}
\end{array} \]

1) divide cake into 2.
\[\begin{array}{c}
\text{O new person}
\text{selects a parent piece from each.}
\end{array} \]
Finik's lone chaser

Start $n = 2$ [divide & choose]

P_1 creates X_1, X_2 where $v(X_1) = v(X_2) = \frac{1}{2}$

Suppose P_2 chooses, take π_2

P_1 gets π_1

Standard divide & choose

Along comes P_3

$\begin{align*}
P_{11} & \quad \pi_{12} & \quad \pi_{13} \\
\pi_{21} & \quad \pi_{22} & \quad \pi_{23}
\end{align*}$

Equal pieces to P_1

Equal pieces to P_2

$P_1 \quad v(\pi_{11}) = v(\pi_{12}) = v(\pi_{13}) = \frac{1}{2} \left(\frac{1}{2} \right) = \frac{1}{4} \quad \text{to} \quad P_1$

$P_2 \quad v(\pi_{21}) = v(\pi_{22}) = v(\pi_{23})$, each $\geq \frac{1}{4} \quad \text{to} \quad P_2$

P_3 gets to pick one piece from π_{11}^*

and one piece from π_{22}^*

One piece from P_1, and one from P_2

P_3 takes one piece from P_1 so

the

value of the remaining cake $= \frac{2}{6} = \frac{1}{3}$, $n = 3$

so this is proportional.
For \(n = 2 \) the same value left to \(\pi_1 \) is \(\frac{1}{2} \). For \(n = 3 \), proportional.

What about \(\pi_3 \)'s value of the cake?

\[
\pi_1 \text{ 's piece} \quad \pi_2 \text{ 's piece} \\
\text{value } \pi_3 = \alpha \quad \text{value of } \pi_3 = 1 - \alpha
\]

If the whole piece of cake has value \(\alpha \)

Then \(\frac{1}{3} \) to the divider.

Not all 3 pieces can have value \(\leq \frac{1}{3} \).

\(\pi_3 \) gets at least \(\frac{1}{3} \alpha \) and \(\frac{1}{2} \alpha = 1 \)

\[
\frac{1}{3} \alpha + \frac{1}{3} (1 - \alpha) = \frac{\alpha + 1 - \alpha}{3} = \frac{1}{3}
\]

\(\Rightarrow \pi_3 \) picks up cake from \(\pi_1 + \pi_2 \)

with a value of at least \(\frac{1}{3} \) from \(\pi_3 \)’s perspective.

Along comes \(\pi_4 \) divide cake into 4 pieces.

\[
\pi_1 \quad \pi_2 \quad \pi_3
\]

This is not envy-free.
The number of cuts made is $O(n^3)$ cuts.

$n = \begin{align*}
2 & \quad 1 \\
3 & \quad 5 = 4 + 1 \\
4 & \quad 14 = 9 + 4 + 1 \\
\end{align*}

Woodall's algorithm

- Strongly planar
- related literature
 - Problem of the Nile, 1938 - 1961
 - Ham Sandwich theorem, 1942 - 1985

The cakes value must differ to the two parties.

Assume cake K divided into \Box. People $v_1(s) \neq v_2(s)$.

Dif value 2 people $v_1(s) > v_2(s)$.

* From the above, show that it is possible from K to create $\Box \Box$ when x_1 and x_2 are not necessarily the whole cake.

Such that x_1 values $V_1(x_1) > V_1(x_2)$

x_2 values $V_2(x_1) < V_2(x_2)$
Problem

Given \(x_1, x_2, r \) for rest of the cake,

Assign cake \(\Pi_1, \Pi_2 \) such that:

\[
V_1(\Pi_1) > \frac{1}{2} \\
V_2(\Pi_2) > \frac{1}{2}
\]

Already have \(p_1 \) likes \(x_1 \) and \(p_2 \) likes \(x_2 \) and

the rest at the centre, \(r \).

\(p_1 \) and \(p_2 \) simply play divide and chase
in \(r \), creating \(v_1 + v_2 \).

Analysis for person 1 (\(p_1 \))

Suppose \(V_1(x_1) = \alpha_1 \), \(V_1(x_2) = \alpha_2 \)

\[V_1(r) = 1 - \alpha_1 - \alpha_2 \]

\[
\begin{array}{ccc}
|x_1| & x_2 & r \\
p_1 & | & p_2 \\
\end{array}
\]

By divide and chase \(p_1 \) gets \(r_1 \), \(p_2 \)
gets \(r_2 \) and \(v(r_1) > \frac{1 - \alpha_1 - \alpha_2}{2} \) for \(p_1 \)

Then \(p_1 \) takes \(x_1 \) and \(p_2 \) takes \(x_2 \).

\(p_1 \)’s value

\[
\begin{align*}
V(x_1) &= \alpha_1 \\
V(r_1) &\geq 1 - \frac{\alpha_1 + \alpha_2}{2} \\
V(x_1 + r_1) &\geq \alpha_1 + \frac{1 - \alpha_1 - \alpha_2}{2} = \frac{2\alpha_1 + 1 - \alpha_1 - \alpha_2}{2} \\
V(x_1 + r_1) &\geq \frac{1}{2} + \frac{\alpha_1 - \alpha_2}{2} \\
\end{align*}
\]

\(\therefore V > \frac{1}{2} \) because \(\alpha_1 > \alpha_2 \)
Skiplines - Kuhn

Condiver, complicated

0. P_1 creates x_1, x_2, x_3 where $v(x_1) = v(x_2) = v(x_3) = \frac{1}{3}$ from

1. P_2 defines $S_2 = \{x_1, x_2, x_3\} \mid \forall x \in S_2 \quad v_2(x) \geq \frac{1}{3}$

[Lemma $|S_2| \geq 1$]

2. P_3 does the same thing to create S_3 using x_1, x_2, x_3

Two possibilities

0. a) Lucky $|S_2| > 1$, Assign from smallest to largest

$|S_2|, |S_3|$ size.

Ex. $S_2 = \{x_1, x_3\} \quad S_3 = \{x_3\}$

$P_3 = x_3 \quad P_2 = x_1$ and pass

1 gets whatever is left over because they like every piece equally.

0. b) Unlucky $|S_2| = |S_3| = 1$

There must be an unacceptable piece (say x_1) such that $v_2(x_1) < \frac{1}{3} \quad v_3(x_1) < \frac{1}{3}$, so
give x_1 to P_1. Then combine $x_2 + x_3$

and play divide and choose with $P_2 + P_3$.

Not envy free. P_1 can envy in case b. divide and choose

In case a P_2 can envy P_3 but not

P_1. P_1 cannot envy anyone in a because he values each piece equally.