Share like a pirate

Modified Dubui's Spanier (thanks: Troy, Mike)

Austin \(\frac{1}{m} \) (reprise)

Divide a cake into \(m \) equal pieces, as seen by \(n \geq 2 \) players

Trimming Algorithm (Moving Cake)

Some other non-continuous methods

Line choosers (people keep joining the division problem)

\[\text{Austin} \]

Recall: \(n \) agree on a piece that is \(\frac{1}{m} \) in value

(continued on next page)

Pirate Ship:

<table>
<thead>
<tr>
<th>Captain</th>
<th>agreed upon</th>
</tr>
</thead>
<tbody>
<tr>
<td>Surgeon</td>
<td>200</td>
</tr>
<tr>
<td>Carpenter</td>
<td>100</td>
</tr>
</tbody>
</table>

Injuries:

Right arm	600
Left arm	500
Right leg	
Left leg	400

\[\text{Captain} \quad 6 \quad \text{Crew (Adult)} \quad 1 \]

\[\text{Master} \quad 4 \quad \text{Crew (juvenile)} \quad \frac{1}{2} \]

New instance: divide remaining piece as if it is a new cake.

\[\frac{1}{2} \quad \frac{1}{2} \quad \frac{1}{2} \]
$n = 6$

$0 - 5 \quad 5$

$V_1(\pi) = \frac{1}{3} \quad V_2(\pi) = \frac{1}{3} \quad V_3(\pi) = \frac{1}{3}$

New cake

Recall: 2 agree on piece that is $\frac{1}{m}$ in value.

b looks at markings & may agree 1 piece $\frac{1}{m}$ $V_b(\pi) = \frac{1}{m} = V_b(\pi)$

If not, no piece has exactly $\frac{1}{m}$ in value to b.

Some less, others more.

Can't all be same.

Can't all be more.

b votes for P_2.

2 pieces, designated by P_1 & P_2.

b says stop when also sees $\frac{1}{m}$ in value.
Ex. Find y of origin, then $\frac{y}{m} = \frac{1}{3}$...

Now P and B repeat process, looking for $\frac{1}{m}$ of AC captive

Result has $\frac{1}{m}$ value of origin, came to both,

Divide into 4 equal pieces

Apply **knife** (moves discretely)

\[
\begin{align*}
&\{1\} \quad \{2\} \\
&\{3\} \quad \{4\} \\
&\{5\} \quad \{6\} \\
&\{7\} \quad \{8\}
\end{align*}
\]

P_1 did not say stop — above the cut is $\frac{1}{2}$, below is more (for P_2)

P_1 moves items either side of the cut, always keeping $\frac{1}{2} \& \frac{1}{2}$

Then P_2 says stop — some sort of agreement (not perfect)
Baron - Master

Moving Gate / Last Diminisher / Thinning Alg (precedes moving knife)

Works in rounds

\(n \) parties

\(n \) rounds - in each round, 1 party receives cake

\[\begin{array}{c}
\text{Parties} \\
\text{Cake} \\
\text{trimmings bucket}
\end{array} \]

Rules:

1) In round \(r \), when person \(P_i \) receives cake \(x_{r,i} \), then \(P_i \) creates \(x_{r+1,i} \) by trimming away \(d_i \), \(d_i \geq 0 \)

2) In round \(r \), the last party \((n)\) to create \(d_{r,n} \), \(d_{r,n} > 0 \) receives \(x_{r,n+1} \)

3) In round \(n+1 \) (2 parties left), do divide & choose

Strategy:

\[x_{r,i} \xrightarrow{} x_{r+1,i} \]

\[d_r \]

Strategy to guarantee proportionality

If \(\forall i \geq 1, \sum_{i=1}^{n} x_{r,i} = x_{r,n} \)

else \(x_{r+1,n} = x_{r,n} \)

In round \(1 \), \(x_{1,1} = \text{whole cake} \)

In round \(c = 1 \), \(x_{c,i} = 0 \)

all \(c \leq n \)
Example:

1. **Preferences:**
 - Uniform
 - Likes left side
 - Likes right side

2. \(X_{12} \rightarrow \) Snip \(x_{12} \) left
 - \(V_a(x_{12}) = \frac{1}{2} \)
 - \(V_a(x_{13}) = \frac{1}{3} \)
 - \(V_a(d_{12}) = \frac{1}{6} \)

3. \(x_{13} \rightarrow \) Snip \(x_{13} \)
 - \(x_4 = x_{14} \)
 - \(V_3(x_{14}) = \frac{1}{4} \)
 - \(V_3(\text{rest of cake}) = \frac{1}{4} \)

Round 1: \(X \) is given to 2 - out

- \(P_1 + P_3 \) divide and choose
- \(V_r(\text{rest of cake}) \geq \frac{2}{3} \)
- \(V_3(\text{rest of cake}) \geq \frac{7}{9} \)

Suppose \(P_1 \) divides each \(\geq \frac{1}{3} \)

- \(P_1 \rightarrow \frac{1}{3} \)
- \(P_2 \rightarrow \frac{1}{3} \)

One piece must \(V_3(x) \geq \frac{1}{3} \cdot \frac{8}{9} = \frac{8}{27} \)

- \(\frac{8}{27} = \frac{2}{3} \cdot \frac{1}{3} \)

Example was proportional: Is it always?

Each piece after \(i \) has value \(\leq \frac{1}{i} \) to \(i \)

- Eventually, since cake has value 1, I will see a piece \(\geq \frac{1}{2} \)
- We will get that piece if last diminisher

** envy-free? No!** (earlier drop-out might envy someone who got their piece later)

- Last player envies nobody, last piece must have value \(\geq \frac{1}{2} \) (the dude's choice)
- Show same is true for penultimate
Regular Auction vs. Dutch Auction

my value = 10

- 6 I wh
- 5
- 1