Properties of TMs' languages

\[P = \{ e(t) \mid p(L(t)) \} \]

Examples

\[P_1 = \{ e(t) \mid |L(t)| \leq 5 \} \]

TMs whose languages contain no more than 5 strings.

\[P_2 = \{ e(t) \mid e(\text{dog}) \in L(t) \} \]

TMs whose languages contain the (encoded) string "dog".

A property is itself a language whose strings are TMs that possess the desired property. Are her properties recursive?

\[e(t) \rightarrow \text{TM for } P \]

Does T have property \(P \)?

Y N
Rice's theorem:
Any non-trivial property of
the RE languages (TMs)
is non-recursive.

A property P is TRIVIAL if

$P = \emptyset$: No TM can satisfy P.

$P = \{ \text{all TMs} \}$: Every TM satisfies P.

$P = \{ e(t) \mid L(t) \leq \varepsilon^* \}$: All TMs.

$P = \{ e(t) \mid L(t) > \varepsilon^* \}$: No TM.

The non-trivial part is needed for the proof...

Proof: We show P recursive \Rightarrow SA recursive.

Consider any non-trivial property P.

If P is recursive, we have e_P as
a TM that decides membership in P.

\[
\begin{array}{c}
e(t) \\
\downarrow \\
v
\end{array} \xrightarrow{T_P} \begin{array}{c}
\text{as 258.1}
\end{array}
\]
Because P is nontrivial, we know that among all TMs we can find

$$T, T' \in P$$

$$T \neq T' \in P.$$

Also let's define

$$\text{Empty} = \{ e(T) \mid L(T) = \emptyset \}$$

These TMs accept no string. But one or more may satisfy one property P.

Recall $P_1 = \{ e(T) \mid |L(T)| \leq 5 \}$

Surely $\text{Empty} \leq P_1$

Surely $\text{Empty} \cap P_2 = \emptyset$ if a TM's language is \emptyset it can't contain "dos"
Proof

Case 1: Empty \(\cap \) P = \(\emptyset \)

\[L(T_{\text{obs}}) = \emptyset \quad \text{if} \quad T \text{ does not accept } w \]

In this case, \(T_{\text{obs}} \subseteq P \)

So \(\Rightarrow \) say No

\[L(T_{\text{obs}}) \text{ satisfies } P \quad \text{if} \quad T \text{ accepts } w \text{ in } T_{\text{obs}} \]

So \(\Rightarrow \) say Yes
Case 2: Empty $\leq P$

Case 1 proof fails because I would say yes to all T_0S, even if T does not accept w.

So...

Does T not accept w?

$L(T_0S) = \emptyset$ if T does not accept w.

In this case, $T_0S \in P$.

So \Rightarrow accepting YES.
$L(TOBS) \text{ does not satisfy } P$

If T accepts w

$TOBS$ behave like a TM not in P

so $\not\exists \text{ supp } NO$